Advertisement

Clinical PET pp 210-227 | Cite as

Infectious and Inflammatory Diseases

  • Kyung-Han Lee
  • June-Key Chung
Chapter
  • 252 Downloads

Abstract

Positron emission tomography (PET) with fluorine-18-fluoro-2-deoxyD-glucose (FDG) is a powerful tool to diagnose, stage, and monitor cancer patients. While this technique exploits the fact that enhanced glucose utilization leading to high FDG uptake is characteristic for a variety of cancers, FDG is not a tumor-specific agent. Infectious or inflammatory lesions with high concentrations of activated leukocytes and/or macrophages also show significantly elevated levels of FDG accumulation. Such lesions can be mistaken for malignancy in patients undergoing PET studies for cancer evaluation, which may lead to false-positive interpretation. However, in patients with known or suspected infectious or inflammatory lesions, FDG-PET can be used to quantify the pathologic increase in glucose metabolism of inflammatory processes and may be a powerful clinical tool for the diagnosis of monitoring inflammatory activity. FDG-PET thus may be useful for evaluating such diseases caused by infections from a variety of bacteria, mycobacteria, virus, and fungi, and also infectious or inflammatory processes.

Keywords

Positron Emission Tomography Single Photon Emission Compute Tomography Positron Emission Tomography Imaging Giant Cell Arteritis Chronic Granulomatous Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ma LD, Frassica FJ, Bluemke DA, et al. CT and MRI evaluation of musculoskeletal infection. Crit Rev Diagn Imaging 1997; 38 (6): 535 – 568.PubMedGoogle Scholar
  2. 2.
    Alazraki NP. Gallium-67 imaging in infection. In: Early PJ, Sodee DB, eds. Principles and Practice of Nuclear Medicine, 2nd ed. St. Louis: Mosby-Year Book, 1995: 702 – 713.Google Scholar
  3. 3.
    Sugawara Y, Braun DK, Kison PV. Rapid detection of human infections with fluorine-18 fluorodeoxyglucose and positron emission tomography: preliminary results. Eur J Nucl Med 1998; 25 (9): 1238 – 1243.PubMedCrossRefGoogle Scholar
  4. 4.
    Kubota R, Yamada S, Kubota K et al. Intratumoral distribution of fluorine18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studies by microautoradiography. J Nucl Med 1992; 33: 1972 – 1980.PubMedGoogle Scholar
  5. 5.
    Weisdorf DJ, Craddock PR, Jacob HS. Glycogenolysis versus glucose transport in human granulocytes: differential activation in phagocytosis and chemotaxis. Blood 1982; 60: 888 – 893.PubMedGoogle Scholar
  6. 6.
    Lehmann K, Behe M, Meller J, et al. F-18-FDG uptake in granulocytes: basis of F-18-FDG scintigraphy for imaging infection. J Nucl Med 2001; 42: 1384 (abstr).Google Scholar
  7. 7.
    Jones HA, Cadwallader KA, White JF, et al. Dissociation between respiratory burst activity and deoxyglucose uptake in human neutrophil granulocytes: implications for interpretation of 18F-FDG PET images. J Nucl Med 2002; 43 (5): 652 – 657.PubMedGoogle Scholar
  8. 8.
    Paik JY, Lee KH, Choe YS, et al. Increased 18F-FDG uptake in human monocytic U937 cells stimulated with interferon-y. J Nucl Med 2000;41(5):321(abstr).Google Scholar
  9. 9.
    Chakrabarti R, Jung CY, Lee TP, et al. Changes in glucose transport and transporter isoforms during the activation of human peripheral blood lymphocytes by phytohemagglutinin. J Immunol 1994; 152 (6): 2660 – 2668.PubMedGoogle Scholar
  10. 10.
    Mochizuki T, Tsukamoto E, Kuge Y, et al. FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. J Nucl Med 2001; 42 (10): 1551 – 1555.PubMedGoogle Scholar
  11. 11.
    Yamada S, Kubota K, Kubota R, et al. High accumulation of fluorine-18fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med 1995; 36: 1301 – 1306.PubMedGoogle Scholar
  12. 12.
    Nakamoto Y, Higashi T, Sakahara, et al. Delayed FDG-PET scan for the differentiation between malignant and benign lesions. J Nucl Med 1999; 40: 247 p.Google Scholar
  13. 13.
    Paik J-Y, Lee K-H, et al. Usefulness of insulin to improve F-18 FDG labeling and retention for in vivo PET imaging of monocyte trafficking. Nucl Med Commun 2002; 23 (6): 551 – 557.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhuang HM, Loman JC, Cortes-Blanco A, et al. Hyperglycemia does not adversely affect FDG uptake by inflammatory and infectious lesions in FDG PET imaging. J Nucl Med 2000; 41: 1396 (abstr).Google Scholar
  15. 15.
    Zhao S, Kuge Y, Tsukamoto E, et al. Effects of insulin and glucose loading on FDG uptake in experimental malignant tumours and inflammatory lesions. Eur J Nucl Med 2001; 28 (6): 730 – 735.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhao S, Kuge Y, Tsukamoto E, et al. Fluorodeoxyglucose uptake and glucose transporter expression in experimental inflammatory lesions and malignant tumours: effects of insulin and glucose loading. Nucl Med Commun 2002; 23 (6): 545 – 550.PubMedCrossRefGoogle Scholar
  17. 17.
    Seeger LL, Dungan DH, Eckardt JJ, et al. Nonspecific findings on MR imaging. The importance of correlative studies and clinical information. Clin Orthop 1991;(270):306–312.Google Scholar
  18. 18.
    Tehranzadeh J, Wong E, Wang F, et al. Imaging of osteomyelitis in the mature skeleton. Radiol Clin North Am 2001; 39 (2): 223 – 250.PubMedCrossRefGoogle Scholar
  19. 19.
    Merkel KD, Brown ML, Dewanjee MK, et al. Comparison of indium-labeled leukocyte imaging with sequential technetium-gallium scanning in the diagnosis of low-grade musculoskeletal sepsis. J Bone Joint Surg 1985; 67A: 465.PubMedGoogle Scholar
  20. 20.
    Al-Sheik W, Sfakianakis GN, Mnaymneh W, et al. Subacute and chronic bone infections: diagnosis using In-111, Ga-67 and Tc-99m MDP bone scintigraphy, and radiology. Radiology 1985; 155: 501 – 506.Google Scholar
  21. 21.
    Plestro JP. The current role of gallium imaging in infection. Semin Nucl Med 1994; 24: 128 – 141.CrossRefGoogle Scholar
  22. 22.
    Datz FD. Indium-111 labeled leukocytes for the detection of infection: current status. Semin Nucl Med 1994; 24: 92.PubMedCrossRefGoogle Scholar
  23. 23.
    Datz FL, Thorne DA. Cause and significance of cold bone defects on indium-111-labeled leukocyte imaging. J Nucl Med 1987; 28 (5): 820 – 823.PubMedGoogle Scholar
  24. 24.
    Palestro CJ, Kim CK, Swyer AJ, et al. Radionuclide diagnosis of vertebral osteomyelitis: indium-111-leukocyte and technetium-99m-methylene diphosphonate bone scintigraphy. J Nucl Med 1991; 32 (10): 1861 – 1865.PubMedGoogle Scholar
  25. 25.
    Stumpe KD, Dazzi H, Schaffner A, et al. Infection imaging using whole-body FDG-PET. Eur J Nucl Med 2000; 27 (7): 822 – 832.PubMedCrossRefGoogle Scholar
  26. 26.
    Sugawara Y, Braun D, Kison P, et al. Rapid detection of human infections with fluorine-18 fluorodeoxyglucose and positron emission tomography. Preliminary results. Eur J Nucl Med 1998; 25: 1238.PubMedCrossRefGoogle Scholar
  27. 27.
    Guhlmann A, Brecht-Krauss D, Suger G, et al. Chronic osteomyelitis: detection with FDG PET and correlation with histopathologic findings. Radiology 1998; 206 (3): 749 – 754.PubMedGoogle Scholar
  28. 28.
    Guhlmann A, Brecht-Krauss D, Suger G, et al. Fluorine-18-FDG PET and technetium-99m antigranulocyte antibody scintigraphy in chronic osteomyelitis. J Nucl Med 1998; 39 (12): 2145 – 2152.PubMedGoogle Scholar
  29. 29.
    de Winter F, van de Wiele C, Vogelaers D, et al. Fluorine-18 fluorodeoxyglucose-positron emission tomography: a highly accurate imaging modality for the diagnosis of chronic musculoskeletal infections. J Bone Joint Surg 2001; 83A (5): 651 – 660.PubMedGoogle Scholar
  30. 30.
    de Winter F, van de Wiele C, Gennel F, et al. 18F FDG PET in the diagnosis of chronic vertebral infections. J Nucl Med 2002;43(5):132(abstr).Google Scholar
  31. 31.
    Schmitz A, Kalicke T, Willkomm P, et al. Use of fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in assessing the process of tuberculous spondylitis. J Spinal Disord 2000; 13 (6): 541 – 544.PubMedCrossRefGoogle Scholar
  32. 32.
    Ho AY, Pagliuca A, Maisey MN, et al. Positron emission scanning with 18F-FDG in the diagnosis of deep fungal infections. Br J Haematol 1998; 101 (2): 392 – 393.PubMedCrossRefGoogle Scholar
  33. 33.
    Kalicke T, Schmitz A, Risse JH, et al. Fluorine-18 fluorodeoxyglucose PET in infectious bone diseases: results of histologically confirmed cases. Eur J Nucl Med 2000; 27 (5): 524 – 528.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhuang H, Duarte PS, Pourdehand M, et al. Exclusion of chronic osteomyelitis with F-18 fluorodeoxyglucose positron emission tomographic imaging. Clin Nucl Med 2000; 25 (4): 281 – 284.PubMedCrossRefGoogle Scholar
  35. 35.
    Chacko TK, Zhuang HM, Alavi A. FDG-PET is an effective alternative to WBC imaging in diagnosing and excluding orthopedic infections. J Nucl Med 2002;43(5):126(abstr).Google Scholar
  36. 36.
    Smith SL, Wastie ML, Forster I. Radionuclide bone scintigraphy in the detection of significant complications after total knee joint replacement. Clin Radiol 2001; 56 (3): 221 – 224.PubMedCrossRefGoogle Scholar
  37. 37.
    Merkel KD, Brown ML, Fitzgerald RH Jr. Sequential technetium-99m HMDP gallium-67 citrate imaging for the evaluation of infection in the painful prosthesis. J Nucl Med 1986; 27: 1413 – 1417.PubMedGoogle Scholar
  38. 38.
    Kraemer WJ, Saplys R, Waddell JP, et al. Bone scan, gallium scan, and hip aspiration in the diagnosis of infected total hip arthroplasty. J Arthroplasty 1993; 8 (6): 611 – 616.PubMedCrossRefGoogle Scholar
  39. 39.
    Scher DM, Pak K, Lonner JH, et al. The predictive value of indium-111 leukocyte scans in the diagnosis of infected total hip, knee, or resection arthroplasties. J Arthroplasty 2000; 15: 295 – 300.PubMedCrossRefGoogle Scholar
  40. 40.
    Temmerman OP, Heyligers IC, Hoekstra OS, et al. Detection of osteomyelitis using FDG and positron emission tomography. J Arthroplasty 2001; 16 (2): 243 – 246.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhuang H, Duarte PS, Pourdehand M, et al. The promising role of 18FFDG PET in detecting infected lower limb prosthesis implants. J Nucl Med 2001;42(1):44 – 48.Google Scholar
  42. 42.
    Van Acker F, Nuyts J, Maes A, et al. FDG-PET, 99mtc-HMPAO white blood cell SPECT and bone scintigraphy in the evaluation of painful total knee arthroplasties. Eur J Nucl Med 2001; 28 (10): 1496 – 1504.PubMedCrossRefGoogle Scholar
  43. 43.
    Marwin SE, Tomas MB, Palestro CJ. Improving the specificity of 18F-FDG imaging of painful joint prosthesis. J Nucl Med 2002;43(5):126(abstr).Google Scholar
  44. 44.
    Zhuang H, Alavi A. 18-fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation. Semin Nucl Med 2002; 32 (1): 47 – 59.PubMedCrossRefGoogle Scholar
  45. 45.
    Heiba SI, Luo JQ, Sadek S, et al. Attenuation correction induced artifact in F-18 FDG PET imaging following total knee replacement. Clin Positron Imag 2000; 3: 237 – 239.CrossRefGoogle Scholar
  46. 46.
    Johnston SL, Lock RJ, Gompels MM. Takayasu arteritis: a review. J Clin Pathol 2002; 55 (7): 481 – 486.PubMedCrossRefGoogle Scholar
  47. 47.
    Angeli E, Vanzulli A, Venturini M, et al. The role of radiology in the diagnosis and management of Takayasu’s arteritis. J Nephrol 2001;14(6):514–524.Google Scholar
  48. 48.
    Peters M. Nuclear medicine in vasculitis. Rheumatology 2000; 39: 463 – 470.PubMedCrossRefGoogle Scholar
  49. 49.
    Jonker N, Peters AM, Gaskin G, et al. A retrospective study of granulocyte kinetics in patients with systemic vasculitis. J Nucl Med 1992; 33: 491 – 497.PubMedGoogle Scholar
  50. 50.
    Reuter H, Wraight EP, Qasim FJ, et al. Management of systemic vasculitis: contribution of scintigraphic imaging to evaluation of disease activity and classification. Q J Med 1995; 88: 509 – 516.Google Scholar
  51. 51.
    Ussov WY, Peters AM, Savill J, et al. Relationship between granulocyte activation, pulmonary granulocyte kinetics and alveolocapillary barrier integrity in extrapulmonary inflammatory disease. Clin Sci 1996; 91: 329 – 335.PubMedGoogle Scholar
  52. 52.
    Gurwood AS, Malloy KA. Giant cell arteritis. Clin Exp Optom 2002; 85 (1): 19 – 26.PubMedCrossRefGoogle Scholar
  53. 53.
    Blockmans D, Stroobants S, Maes A, et al. Positron emission tomography in giant cell arteritis and polymyalgia rheumatica: evidence for inflammation of the aortic arch. Am J Med 2000; 108 (3): 246 – 249.PubMedCrossRefGoogle Scholar
  54. 54.
    Blockmans D, Maes A, Stroobants S, et al. New arguments for a vasculitic nature of polymyalgia rheumatica using positron emission tomography. Rheumatology 1999; 38 (5): 444 – 447.PubMedCrossRefGoogle Scholar
  55. 55.
    Turlakow A, Yeung HW, Pui J, et al. Fluorodeoxyglucose positron emission tomography in the diagnosis of giant cell arteritis. Arch Intern Med 2001; 161 (7): 1003 – 1007.PubMedCrossRefGoogle Scholar
  56. 56.
    Hara M, Goodman PC, Leder RA. FDG-PET finding in early-phase Takayasu arteritis. J Comput Assist Tomogr 1999; 23 (1): 16 – 18.PubMedCrossRefGoogle Scholar
  57. 57.
    Meiler J, Becker W. Nuclear medicine diagnosis of patients with fever of unknown origin. Nuklearmedizin 2001; 40 (3): 59 – 70.Google Scholar
  58. 58.
    Peters AM. The use of nuclear medicine in infections. Br J Radiol 1998; 71 (843): 252 – 261.PubMedGoogle Scholar
  59. 59.
    Dreyer M, Borgwardt L, Reichnitzer C, et al. The role of whole body FDGPET in pediatric patients with fever of unknown origin. J Nucl Med 2001; 42: 142.Google Scholar
  60. 60.
    Lorenzen J, Buchert R, Bleckmann C, et al. A search for the focus in patients with fever of unknown origin: is positron-emission tomography with F-18-fluorodeoxyglucose helpful? Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 1999; 171 (1): 49 – 53.PubMedCrossRefGoogle Scholar
  61. 61.
    Lorenzen J, Buchert R, Bohuslavizki KH. Value of FDG PET in patients with fever of unknown origin. Nucl Med Commun 2001; 22 (7): 779 – 783.PubMedCrossRefGoogle Scholar
  62. 62.
    Blockmans D, Knockaert D, Maes A, et al. Clinical value of [18F]fluoro-deoxyglucose positron emission tomography for patients with fever of unknown origin. Clin Infect Dis 2001; 32 (2): 191 – 196.PubMedCrossRefGoogle Scholar
  63. 63.
    Meller J, Altenvoerde G, Munzel U, et al. Fever of unknown origin: prospective comparison of [18F]FDG imaging with a double-head coincidence camera and gallium-67 citrate SPECT. Eur J Nucl Med 2000; 27 (11): 1617 – 1625.PubMedCrossRefGoogle Scholar
  64. 64.
    Bicik I, Bauerfeind P, Breitbach T, et al. Inflammatory bowel disease activity measured by positron-emission tomography. Lancet 1997; 350 (9073): 262.PubMedCrossRefGoogle Scholar
  65. 65.
    Skehan SJ, Issenman R, Mernagh J, et al. 18F-fluorodeoxyglucose positron tomography in diagnosis of pediatric inflammatory bowel disease. Lancet 1999; 354 (9181): 836 – 837.PubMedCrossRefGoogle Scholar
  66. 66.
    Jacobson K, Mernagh JR, Green T, et al. Positron emission tomography in the investigation of pediatric inflammatory bowel disease. Gastroenterology 1999; 116: A742 (abstr).Google Scholar
  67. 67.
    Hannah A, Scott AM, Akhurst T, et al. Abnormal colonic accumulation of fluorine-18-FDG in pseudomembranous colitis. J Nucl Med 1996; 37 (10): 1683 – 1685.PubMedGoogle Scholar
  68. 68.
    Meyer MA. Diffusely increased colonic FDG uptake in acute enterocolitis. Clin Nucl Med 1995; 20 (5): 434 – 435.PubMedCrossRefGoogle Scholar
  69. 69.
    Kresnik E, Mikosch P, Gallowitsch HJ, et al. F-18 fluorodeoxyglucose positron emission tomography in the diagnosis of inflammatory bowel disease. Clin Nucl Med 2001;26(10):867(abstr).Google Scholar
  70. 70.
    Bakheet SM, Saleem M, Powe J, et al. F-18 fluorodeoxyglucose chest uptake in lung inflammation and infection. Clin Nucl Med 2000; 25 (4): 273 – 278.PubMedCrossRefGoogle Scholar
  71. 71.
    Jones HA, Clark RJ, Rhodes CG, et al. Positron emission tomography of 18FDG uptake in localized pulmonary inflammation. Acta Radiol Suppl 1991; 376: 148.PubMedGoogle Scholar
  72. 72.
    Yoon SN, Park CH, Kim MK, et al. False-positive F-18 FDG gamma camera positron emission tomographic imaging resulting from inflammation of an anterior mediastinal mass in a patient with non-Hodgkin’s lymphoma. Clin Nucl Med 2001; 26 (5): 461 – 462.PubMedCrossRefGoogle Scholar
  73. 73.
    Goswami GK, Jana S, Santiago JF, et al. Discrepancy between Ga-67 citrate and F-18 fluorodeoxyglucose positron emission tomographic scans in pulmonary infection. Clin Nucl Med 2000; 25 (6): 490 – 491.PubMedCrossRefGoogle Scholar
  74. 74.
    Kapucu LO, Meltzer CC, Townsend DW, et al. Fluorine-18-fluorodeoxyglucose uptake in pneumonia. J Nucl Med 1998; 39 (7): 1267 – 1269.PubMedGoogle Scholar
  75. 75.
    Croft DR, Trapp J, Kernstine K, et al. FDG-PET imaging and the diagnosis of non-small cell lung cancer in a region of high histoplasmosis prevalence. Lung Cancer 2002; 36 (3): 297 – 301.PubMedCrossRefGoogle Scholar
  76. 76.
    Goo JM, Im JG, Do KH, et al. Pulmonary tuberculoma evaluated by means of FDG PET: findings in 10 cases. Radiology 2000; 216 (1): 117 – 121.PubMedGoogle Scholar
  77. 77.
    Liu RS, Shei HR, Feng CF, et al. Combined 18F FDG and 11C acetate PET imaging in diagnosis of pulmonary tuberculosis. J Nucl Med 2002; 43(5):127(abstr).Google Scholar
  78. 78.
    Ichiya Y, Kuwabara Y, Sasaki M, et al. FDG-PET in infectious lesions: the detection and assessment of lesion activity. Ann Nucl Med 1996; 10 (2): 185 – 191.PubMedCrossRefGoogle Scholar
  79. 79.
    Gotway MB, Storto ML, Golden JA, et al. Incidental detection of thoracic sarcoidosis on whole-body 18-fluorine-2-fluoro-2-deoxy-D-glucose positron emission tomography. J Thorac Imag 2000; 15 (3): 201 – 204.CrossRefGoogle Scholar
  80. 80.
    Pitman AG, Hicks RJ, Binns DS, et al. Performance of sodium iodide based 18F-fluorodeoxyglucose positron emission tomography in the characterization of indeterminate pulmonary nodules or masses. Br j Radiol 2000; 75 (890): 114 – 121.Google Scholar
  81. 81.
    Pitman AG, Hicks RJ, Kalff V, et al. Positron emission tomography in pulmonary masses where tissue diagnosis is unhelpful or not possible. Med J Aust 2001; 175 (6): 303 – 307.PubMedGoogle Scholar
  82. 82.
    Brudin LH, Valind SO, Rhodes CG, et al. Fluorine-18 deoxyglucose uptake in sarcoidosis measured with positron emission tomography. Eur J Nucl Med 1994; 21 (4): 297 – 305.PubMedCrossRefGoogle Scholar
  83. 83.
    Yamada Y, Uchida Y, Tatsumi K, et al. Fluorine-18-fluorodeoxyglucose and carbon-11-methionine evaluation of lymphadenopathy in sarcoidosis. J Nucl Med 1998; 39 (7): 1160 – 1166.PubMedGoogle Scholar
  84. 84.
    Gungor T, Engel-Bicik I, Eich G, et al. Diagnostic and therapeutic impact of whole body positron emission tomography using fluorine-18-fluoro-2deoxy-D-glucose in children with chronic granulomatous disease. Arch Dis Child 2001; 85 (4): 341 – 345.PubMedCrossRefGoogle Scholar
  85. 85.
    O’Doherty MJ, Barrington SF, Campbell M, et al. PET scanning and the human immunodeficiency virus-positive patient. J Nucl Med 1997; 38 (10): 1575 – 1583.PubMedGoogle Scholar
  86. 86.
    Flinn 1W, Ambinder RF. AIDS primary central nervous system lymphoma. Curr Opin Oncol 1996; 8 (5): 37357 – 37366.Google Scholar
  87. 87.
    Heald AE, Hoffman JM, Bartlett JA, et al. Differentiation of central nervous system lesions in AIDS patients using positron emission tomography (PET). frit J STD AIDS 1996; 7 (5): 337 – 346.Google Scholar
  88. 88.
    Villringer K, Jager H, Dichgans M, et al. Differential diagnosis of CNS lesions in AIDS patients by FDG-PET. J Comput Assist Tomogr 1995; 19 (4): 532 – 536.PubMedCrossRefGoogle Scholar
  89. 89.
    Hoffman JM, Waskin HA, Schifter T, et al. FDG-PET in differentiating lymphoma from nonmalignant central nervous system lesions in patients with AIDS. J Nucl Med 1993; 34 (4): 567 – 575.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Kyung-Han Lee
  • June-Key Chung

There are no affiliations available

Personalised recommendations