Principles of PET/CT

  • Osama Mawlawi
  • Richard WendtIII
  • Wai-Hoi Wong


In recent years positron emission tomography (PET) has emerged as a unique imaging modality with applications in cardiology, neurology, oncology, and psychiatry due to its ability to produce accurately quantifiable images of physiologic information instead of anatomic structures. This ability, coupled with the extended PET reimbursement by major insurance carriers in the United States for a range of PET oncology studies, has further fueled the rapid increase in the clinical demand for this imaging modality. Research groups and industry strive to optimize this imaging technique. One of the very recent developments in PET imaging has been the introduction of a combined PET/computed tomography (CT) scanner. This chapter presents the reasons for this development, and discusses the advantages and artifacts presented by such imaging systems, and the impact of PET/CT on patient management as well as its applications in other areas, such as radiation treatment planning.


Positron Emission Tomography Positron Emission Tomography Image Attenuation Correction Positron Emission Tomography Scanner Positron Emission Tomography Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Phelps ME, Huang SC, Hoffman EJ, et al. Tomographic measurement of local cerebral glucose rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 1979; 6 (5): 371 – 388.PubMedCrossRefGoogle Scholar
  2. 2.
    Huang SC, Phelps ME, Hoffman EJ, et al. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 1980; 238 (1): E69 – 82.PubMedGoogle Scholar
  3. 3.
    Smith TA. FDG uptake, tumor characteristics and response to therapy: a review. Nucl Med Commun 1988; 19 (2): 97 – 105.CrossRefGoogle Scholar
  4. 4.
    Delbeke D. Oncological applications of FDG-PET imaging: brain tumors, colorectal cancer, lymphoma and melanoma. J Nucl Med 1999;40(4):591–603.Google Scholar
  5. 5.
    Gambhir SS, Czernin J, Schwimmer J, et al. A tabulated summary of the FDG-PET literature. J Nucl Med 2001; 42 (5): 1S – 938.PubMedGoogle Scholar
  6. 6.
    Bailey DL. Transmission scanning in emission tomography. Eur J Nucl Med 1998; 25: 774 – 787.PubMedCrossRefGoogle Scholar
  7. 7.
    Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med 2003; 44 (2) 291 – 315.PubMedGoogle Scholar
  8. 8.
    Meikle SR, Dahlbom M, Cherry SR. Attenuation correction using count-limited transmission data in positron emission tomography. J Nucl Med 1993; 34: 143 – 150.PubMedGoogle Scholar
  9. 9.
    Xu M, Cutler P, Luk W. An adaptive local threshold segmented attenuation correction method for whole-body PET imaging. IEEE Trans Nucl Sci 1996; 43: 331 – 336.CrossRefGoogle Scholar
  10. 10.
    Bettinardi V, Pagani E, Gilardi M. An automatic classification technique for attenuation correction in positron emission tomography. Eur J Nucl Med 1999; 26: 447 – 458.PubMedCrossRefGoogle Scholar
  11. 11.
    Bengel FM, Ziegler SI, Avril N, et al. Whole-body positron emission tomography in clinical oncology: comparison between attenuation corrected and uncorrected images. Eur J Nucl Med 1997; 24: 1091 – 1098.PubMedGoogle Scholar
  12. 12.
    Wahl RL. To AC or not to AC: that is the question. J Nucl Med 1999; 40: 2025 – 2028.PubMedGoogle Scholar
  13. 13.
    Diederichs CG. Prospective comparison of FDG-PET of pancreatic tumors with high end spiral CT and MRI. J Nucl Med 1998; 39 (5): 81.Google Scholar
  14. 14.
    Eubank WB, Mankoff DA, Schmeidl UP. Imaging of oncologic patients: benefit of combined CT and FDG-PET in the diagnosis of malignancy. Am J Radiol 1998; 171: 1103 – 1110.Google Scholar
  15. 15.
    Wahl RL, Quint LE, Greenough RL, et al. Staging of mediastinal non-small cell lung cancer with FDG-PET, CT and fusion images: preliminary prospective evaluation. Radiology 1994; 191 (2): 371 – 377.PubMedGoogle Scholar
  16. 16.
    Wahl RL, Quint LE, Cieslak RD, et al. "Anatometabolic" tumor imaging: fusion of FDG-PET with CT or MRI to localize foci of increased activity. J Nucl Med 1993; 34 (7): 1190 – 1197.PubMedGoogle Scholar
  17. 17.
    Vanteenkiste JF, Stroobants SG, Dupont PJ, et al. FDG-PET scan in potentially operable non-small cell lung cancer: Do anatometabolic PET-CT fusion images improve the localization of regional lymph node metastases? The Leuven Lung Cancer Group. Eur J Nucl Med 1998; 25 (11): 1495 – 1501.CrossRefGoogle Scholar
  18. 18.
    Woods RP, Cherry SR, Mazziotta J C. Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 1992; 16 (4): 620 – 633.PubMedCrossRefGoogle Scholar
  19. 19.
    Kinahan PE, Townsend DW, Beyer T, et al. Attenution correction for a combined 3D PET/CT scanner. Med Phys 1998; 25: 2046 – 2053.PubMedCrossRefGoogle Scholar
  20. 20.
    Hany TF, Steinert HC, Goerres GW, et al. PET diagnostic accuracy: improvement with in-line PET-CT system: initial results. Radiology 2002; 225 (2): 575 – 581.PubMedCrossRefGoogle Scholar
  21. 21.
    Israel O, Mor M, Gaitini D, et al. Combined functional and structural evaluation of cancer patients with a hybrid camera-based PET/CT system using F-18-FDG. J Nucl Med 2002; 43 (9): 1129 – 1136.PubMedGoogle Scholar
  22. 22.
    Cohade C, Osman M, Leal J, et al. Direct comparison of FDG-PET and PET-CT imaging in colorectal cancer. J Nucl Med 2002; 43 (suppl 5): 78.Google Scholar
  23. 23.
    Freudenberg LS, Antoch G, Mueller SP, et al. Preliminary results of whole-body FDG-PET/CT in lymphoma. J Nucl Med 2002; 43 (suppl 5): 106.Google Scholar
  24. 24.
    Yeung HW, Schoder H, Larson SM. Utility of PET/CT for assessing equivocal PET lesions in oncology-initial experience. J Nucl Med 2002; 43 (suppl 5): 115.Google Scholar
  25. 25.
    Bar-Shalom R, Keidar Z, Guralnik L, et al. Added value of fused PET/CT imaging with FDG in diagnostic imaging and management of cancer patients. J Nucl Med 2002; 43 (suppl 5): 117.Google Scholar
  26. 26.
    Mah K, Caldwell CB, Ung YE, et al. The impact of 18F-FDG-PET on target and critical organs in CT-based tratment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 2002; 52 (2): 339 – 350.PubMedCrossRefGoogle Scholar
  27. 27.
    Erdi YE, Rosenzweig K, Erdi AK, et al. Radiotherapy treatment planning for patients with non-small-cell lung cancer using positron emission tomography (PET). Radiother Oncol 2002; 62: 51 – 60.PubMedCrossRefGoogle Scholar
  28. 28.
    Mutic S, Grigsby PW, Low DA, et al. PET-guided three-dimensional treatment planning of intracavitary gynecologic implants. Int J Radiat Oncol Biol Phys 2002; 52 (4): 1104 – 1110.PubMedCrossRefGoogle Scholar
  29. 29.
    Dizendorf E, Ciernik IF, Baumert B, et al. Impact of integrated PET CT scanning on external beam radiation treatment planning. J Nucl Med 2002; 43 (suppl 5): 118.Google Scholar
  30. 30.
    Goerres GW, Hany TF, Kamel E, et al. Head and neck imaging with PET and PET/CT: artefacts from dental metallic implants. Eur J Nucl Med Molec Imag 2002; 29 (3): 367 – 370.CrossRefGoogle Scholar
  31. 31.
    Goerres GW, Ziegler SI, Burger C, et al. Artifacts at PET and PET/CT caused by metallic hip prosthetic material. Radiology 2003; 226 (2): 577 – 584.PubMedCrossRefGoogle Scholar
  32. 32.
    Antoch G, Freudenberg LS, Egelhof T, et al. Focal tracer uptake: a potential artifact in contrast-enhanced dual-modality PET/CT scans. J Nucl Med 2002;(10):1339–1342.Google Scholar
  33. 33.
    Dizendorf EV, Treyer V, von Schulthess GK, et al. Application of oral contrast media in coregistered positron emission tomography-CT. AJR 2002; 179 (2): 477 – 481.PubMedCrossRefGoogle Scholar
  34. 34.
    Cohade C, Osman M, Nakamoto Y, et al. Initial experience with oral contrast in PET/CT: phantom and clinical studies. J Nucl Med 2003; 44 (3): 412 – 416.PubMedGoogle Scholar
  35. 35.
    Antoch G, Freudenberg LS, Stattaus J, et al. A whole-body positron emission tomography-CT: optimized CT using oral and IV contrast materials. AJR 2002; 179 (6): 1555 – 1560.PubMedCrossRefGoogle Scholar
  36. 36.
    Mawlawi O, Macapinlac H, Erasmus J, et al. Transformation of CT numbers to PET attenuation factors in the presence of iodinated IV contrast. Eur J Nucl Med Molec Imag 2002; 29: 5108.Google Scholar
  37. 37.
    Goerres GW, Burger C, Kamel E, et al. Respiration-induced attenuation artifact at PET/CT: technical considerations. Radiology 2003; 226 (3): 906 – 910.PubMedCrossRefGoogle Scholar
  38. 38.
    Goerres GW, Kamel E, Heidelberg TNH, et al. PET-CT image co-registration in the thorax: influence of respiration. Eur J Nucl Med Molec Imag 2002; 29 (3): 351 – 360.CrossRefGoogle Scholar
  39. 39.
    Blodgett T, Beyer T, Antoch G, et al. The effect of respiratory motion on PET/CT image quality. J Nucl Med 2002; 43 (suppl 5): 209.Google Scholar
  40. 40.
    Chin BB, Nakamoto Y, Kraitchman DL, et al. Quantitative differences in F-18 FDG uptake due to respiratory motion in PET CT: attenuation correction using CT in end inspiration and end expiration versus Ge-68 correction. J Nucl Med 2002; 43 (suppl 5): 210.Google Scholar
  41. 41.
    Goerres GW, Kamel E, Seifert B, et al. Accuracy of image coregistration of pulmonary lesions in patients with non-small cell lung cancer using an integrated PET/CT system. J Nucl Med 2002; 43 (11): 1469 – 1475.PubMedGoogle Scholar
  42. 42.
    Carney J, Townsend DW, Kinahan PE, et al. CT-based attenuation correction: the effects of imaging with the arms in the field of view. J Nucl Med 2001; 42 (suppl 5): 211.Google Scholar
  43. 43.
    Cody D, Mawlawi O, Forster K. Preliminary study of CT transmission truncation and beam hardening artifacts on quantitative PET activity. Semin Nucl Med (accepted abstract). J Nucl Med 2003; 44 (suppl 5): 273.Google Scholar
  44. 44.
    Beyer T, Townsend DW, Brun T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000; 41 (8): 1369 – 1379.PubMedGoogle Scholar
  45. 45.
    DeGrado TR, Turkington TG, Williams JJ, et al. Performance characteristics of a whole-body PET scanner. J Nucl Med 1994; 35 (8): 1398 – 1406.PubMedGoogle Scholar
  46. 46.
    Lewellen TK, Kohlmyer SG, Miyaoka RS, et al. Investigation of the performance of the General Electric ADVANCE Positron Emission Tomograph in 3D mode. IEEE Trans Nucl Sci 1996; 43 (4): 2199 – 2206.CrossRefGoogle Scholar
  47. 47.
    Mawlawi O, Kohlmyer S, Williams JJ, et al. Performance characteristics of the GE Discovery ST PET/CT scanner using the NEMA standard. J Nucl Med 2003; 44 (5): 111 p.Google Scholar
  48. 48.
    Brix G, Zaers J, Adam LE, et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. J Nucl Med 1997; 38 (10): 1614 – 1623.PubMedGoogle Scholar
  49. 49.
    Reveal RT technical data specification sheet, 2003.Google Scholar
  50. 50.
    Gemini technical specification data sheet, 2003.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Osama Mawlawi
  • Richard WendtIII
  • Wai-Hoi Wong

There are no affiliations available

Personalised recommendations