• David J. Yang
  • Tomio Inoue
  • E. Edmund Kim


Several imaging modalities including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, optical imaging, and gamma scintigraphy have been used to diagnose cancer. Although CT and MRI provide considerable anatomic information about the location and the extent of tumors, they do not adequately differentiate residual or recurrent tumors from edema, radiation necrosis, or gliosis. Ultrasound images provide information about local and regional morphology with blood flow. Though optical imaging showed promising results, its ability to detect deep tissue penetration was not well demonstrated. Radionuclide imaging modalities [positron emission tomography (PET), single photon emission computed tomography (SPECT)] are diagnostic cross-sectional imaging techniques that map the location and concentration of radionuclide-labeled compounds.1–3 Beyond showing precisely where a tumor is and its size, shape, and viability, PET and SPECT are making it possible to “see” the molecular makeup of the tumor and its metabolic activity. Whereas PET and SPECT can provide a very accurate picture of metabolically active areas, their ability to show anatomic features is limited. As a result, new imaging modalities have begun to combine PET and SPECT images with CT scans for treatment planning. PET-CT and SPECT-CT scanners combine anatomic and functional images taken during a single procedure, without having to reposition the patient between scans. To improve the diagnosis, prognosis, planning, and monitoring of the cancer treatment, characterization of tumor tissue is extensively determined by development of more tumor-specific pharmaceuticals. Radio-labeled ligands as well as radiolabeled antibodies have opened a new era in scintigraphic detection of tumors and have undergone extensive preclinical development and evaluation.


Positron Emission Tomography Single Photon Emission Compute Tomography Herpes Simplex Virus Type Positron Emission Tomography Imaging Positron Emission Tomography Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bar-Shalom R, Valdivia AY, Blaufox MD. PET imaging in oncology. Semin Nucl Med 2000; 30: 150–185.PubMedCrossRefGoogle Scholar
  2. 2.
    Plowman PN, Saunders CA, Maisey M. On the usefulness of brain PET scanning to the paediatric neuro-oncologist. Br J Neurosurg 1997; 11: 525532.Google Scholar
  3. 3.
    Weber WA, Avril N, Schwaiger M. Relevance of positron emission tomography (PET) in oncology. Strahlenther Onkl 1999; 175: 356.CrossRefGoogle Scholar
  4. 4.
    Lau CL, Harpole DH, Patz E. Staging techniques for lung cancer. Chest Surg Clin North Am 2000; 10 (4): 781–801.Google Scholar
  5. 5.
    Schulte M, Brecht-Krauss D, Heymer B, et al. Grading of tumors and tumor like lesions of bone: evaluation by FDG PET. J Nucl Med. 2000; 41 (10): 1695–1701.PubMedGoogle Scholar
  6. 6.
    Yutani K, Shiba E, Kusuoka H, et al. Comparison of FDG-PET with MIBISPECT in the detection of breast cancer and axillary lymph node metastasis. J Comput Assist Tomogr 2000; 24 (2): 274–280.PubMedCrossRefGoogle Scholar
  7. 7.
    Franzius C, Sciuk J, Daldrup-Link HE, et al. FDG-PET for detection of osseous metastases from malignant primary bone tumors: comparison with bone scintigraphy. Eur J Nucl Med 2000; 27 (9): 1305–1311.PubMedCrossRefGoogle Scholar
  8. 8.
    Folpe AL, Lyles RH, Sprouse JT, et al. (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res 2000; 6 (4): 1279–1287.PubMedGoogle Scholar
  9. 9.
    Meyer PT, Spetzger U, Mueller HD, et al. High F-18 FDG uptake in a low-grade supratentorial ganglioma: a positron emission tomography case report. Clin Nucl Med 2000; 25 (9): 694–697.PubMedCrossRefGoogle Scholar
  10. 10.
    Franzius C, Sciuk J, Brinkschmidt C, et al. Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission tomography compared with histologically assessed tumor necrosis. Clin Nucl Med 2000; 25 (11): 874–881.PubMedCrossRefGoogle Scholar
  11. 11.
    Carretta A, Landoni C, Melloni G, et al. 18-FDG positron emission tomography in the evaluation of malignant pleural diseases-a pilot study. Eur J Cardiothorac Surg 2000; 17 (4): 377–383.PubMedCrossRefGoogle Scholar
  12. 12.
    Torre W, Garcia-Velloso MJ, Galbis J, et al. FDG-PET detection of primary lung cancer in a patient with an isolated cerebral metastasis. J Cardiovasc Surg 2000; 41 (3): 503–505.Google Scholar
  13. 13.
    Brunelle F. Noninvasive diagnosis of brain tumors in children. Childs Nery Syst 2000; 16 (10–11): 731–734.CrossRefGoogle Scholar
  14. 14.
    Mankoff DA, Dehdashti F, Shields AF. Characterizing tumors using metabolic imaging: PET imaging of cellular proliferation and steroid receptors. Neoplasia 2000; 2: 71.PubMedCrossRefGoogle Scholar
  15. 15.
    Fitzgerald J, Parker JA, Danias PG. F-18 fluorodeoxyglucose SPECT for assessment of myocardial viability. J Nucl Cardiol 2000; 7 (4): 382–387.PubMedCrossRefGoogle Scholar
  16. 16.
    Schwarz A, Kuwert T. Nuclear medicine diagnosis in diseases of the central nervous system. Radiology 2000; 40 (10): 858–862.CrossRefGoogle Scholar
  17. 17.
    Roelcke U, Leenders KL. PET in neuro-oncology. J Cancer Res Clin Oncol 2001; 127 (1): 2–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Brock CS, Meikle SR, Price P. Does 18F-fluorodeoxyglucose metabolic imaging of tumors benefit oncology? Eur J Nucl Med 1997; 24: 691–705.PubMedGoogle Scholar
  19. 19.
    Syrota A, Comar D, Cerf M, et al. [11]C-methionine pancreatic scanning with positron emission computed tomography. J Nucl Med 1979; 20: 778–781.PubMedGoogle Scholar
  20. 20.
    Syrota A, Duquesnoy N, Dasaf A, et al. The role of positron emission tomography in the detection of pancreatic disease. Radiology 1982; 143: 249253.Google Scholar
  21. 21.
    Kubota K, Yamada K, Fukuda H, et al. Tumor detection with carbon-11 labeled amino acid. Eur J Nucl Med 1984; 9: 136–140.PubMedCrossRefGoogle Scholar
  22. 22.
    Hagenfeldt L, Venizelos N, Bjerkenstedt L, et al. Decreased tyrosine transport in fibroblasts from schizophrenic patients. Life Sci 1987; 41: 2749–2757.PubMedCrossRefGoogle Scholar
  23. 23.
    Tisljar U, Kloster G, Stocklin G. Accumulation of radioiodinated L-alphamethyltyrosine in pancreas of mice: concise communication. J Nucl Med 1979; 20: 973–976.PubMedGoogle Scholar
  24. 24.
    Kloss G, Leven M. Accumulation of radioiodinated tyrosine derivatives in the adrenal medulla and in melanomas. Eur J Nucl Med 1979; 4: 179–186.PubMedCrossRefGoogle Scholar
  25. 25.
    Langen KJ, Coenen HH, Roosen N, et al. SPECT studies of brain tumors with L-3-[123I]-Iodo-alpha-methyl tyrosine: comparison with PET, 124IMT and first clinical results. J Nucl Med 1990; 31: 281–286.PubMedGoogle Scholar
  26. 26.
    Tomiyoshi K, Hirano T, Inoue T, et al. Positron emission tomography for evaluation of dopaminergic function using a neurotransmitter analog L-18F-m-tyrosine in monkey brain. Bioimages 1996; 4 (1): 1–7.CrossRefGoogle Scholar
  27. 27.
    Wienhard K, Herholz K, Coenen HH, et al. Increased amino acid transport into brain tumors measured by PET of L-(2–18F)fluorotyrosine. J Nucl Med 1991; 32: 1338–1346.PubMedGoogle Scholar
  28. 28.
    Coenen HH, Kling P, Stocklin G, et al. Metabolism of L2–18F-fluorotyrosine, new PET tracer for protein synthesis. J Nucl Med 1989; 301: 367–1372.Google Scholar
  29. 29.
    Ishiwata K, Valvurg W, Elsigna PH, et al. Metabolic studies with L-11Ctyrosine for the investigation of a kinetic model of measuring protein synthesis rate with PET. J Nucl Med 1988; 29: 524–529.PubMedGoogle Scholar
  30. 30.
    Bolster JM, Valvurg W, Paans AMJ, et al. Carbon-11 labeled tyrosine to study tumor metabolism by positron emission tomography (PET). Eur J Nucl Med 1986; 12: 321–324.PubMedCrossRefGoogle Scholar
  31. 31.
    Dejesus OT, Sunderland JJ, Nicles R, et al. Synthesis of radiofluorinated analogs of m-tyrosine as potential L-dopa tracers via direct reaction with acetylhypofluorite. Appl Radiat Isot 1990; 41 (5): 433–437.CrossRefGoogle Scholar
  32. 32.
    Tang G, Wang M, Tang X, et al. Pharmacokinetics and radiation dosimetry estimation of O-(2-[18F]fluoroethyl)-L-tyrosine as oncologic PET tracer. Appl Radiat Isot 2003; 58 (2): 219–225.PubMedCrossRefGoogle Scholar
  33. 33.
    Hamacher K, Coenen HH. Efficient routine production of the 18F–labelled amino acid 0–2–18F fluoroethyl–L–tyrosine. Appl Radiat Isot 2002; 57 (6): 853 – 856.PubMedCrossRefGoogle Scholar
  34. 34.
    Rau FC, Weber WA, Wester HJ, et al. O-(2-[(18)F]Fluoroethyl)-L-tyrosine (FET): a tracer for differentiation of tumour from inflammation in murine lymph nodes. Eur J Nucl Med Mol Imag 2002; 29 (8): 1039–1046.CrossRefGoogle Scholar
  35. 35.
    Fernandez MD, Burn JI, Sauven PD, et al. Activated estrogen receptors in breast cancer and response to endocrine therapy. Eur J Cancer Clin Oncol 1984; 20: 41–46.PubMedCrossRefGoogle Scholar
  36. 36.
    McGuire AH, Dehdashti F, Siegel BA, et al. Positron tomographic assessment of 16-alpha-[18F]fluoro-17-beta-estradiol uptake in metastatic breast carcinoma. J Nucl Med 1991; 32: 1526–1531.PubMedGoogle Scholar
  37. 37.
    McManaway ME, Jagoda EM, Kasid A, et al. [125I]17-beta-iodovinyl-llbeta-methoxyestradiol: interaction in vivo with ERS in hormone independent MCF-7 human breast cancer transfected with V-ras H oncogene. Cancer Res 1987; 47: 2945–2948.PubMedGoogle Scholar
  38. 38.
    Jagoda EM, Gibson RE, Goodgold H, et al. [125I]17-Iodovinyl-11-betamethoxyestradiol: in vivo and in vitro properties of a high affinity estrogen-receptor radiopharmaceutical. J Nucl Med 1984; 25: 472–477.PubMedGoogle Scholar
  39. 39.
    Hamm JT, Allegra JC. Hormonal therapy for cancer. In: Witts RE, ed. Manual of Oncologic Therapeutics. New York: Lippincott, 1991: 122–126.Google Scholar
  40. 40.
    Wittliff JL. Steroid-hormone receptor in breast cancer. Cancer Res 1984; 53: 630–643.Google Scholar
  41. 41.
    Rasey JS, Nelson NJ, Chin L, et al. Characterization of the binding of labeled fluoromisonidazole in cells in vitro. Radiat Res 1990; 122: 301–308.PubMedCrossRefGoogle Scholar
  42. 42.
    Cherif A, Yang DJ, Tansey W, et al. Synthesis of [18F]fluoromisonidazole. Pharm Res 1994; 11: 466–469.PubMedCrossRefGoogle Scholar
  43. 43.
    Hwang DR, Dence CS, Bonasera TA, et al. No-carrier-added synthesis of 3-[18F]fluoro-1-(2-nitro-1-imidazolyl)-2-propanol. A potential PET agent for detecting hypoxic but viable tissues. Int J Radiat Appl Instrum A 1989; 40: 117–126.CrossRefGoogle Scholar
  44. 44.
    Jerabeck PA, Patrick TB, Kilbourn D, et al. Synthesis and biodistribution of 18F-labeled fluoronitroimidazoles: potential in vivo markers of hypoxic tissue. Appl Radiat Isot 1986; 37: 599–605.CrossRefGoogle Scholar
  45. 45.
    Parliament MB, Chapman JD, Urtasun RC, et al. Noninvasive assessment of tumor hypoxia with 123I-iodoazomycin arabinoside: preliminary report of a clinical study. Br J Cancer 1992; 65: 90–95.PubMedCrossRefGoogle Scholar
  46. 46.
    Valk PET, Mathis CA, Prados MD, et al. Hypoxia in human gliomas: demonstration by PET with [18F]fluoromisonidazole. J Nucl Med 1992; 33: 2133–2137.PubMedGoogle Scholar
  47. 47.
    Martin GV, Caldwell JH, Rasey JS, et al. Enhanced binding of the hypoxic cell marker [18F]fluoromisonidazole in ischemic myocardium. J Nucl Med 1989; 30: 194–201.PubMedGoogle Scholar
  48. 48.
    Martin GV, Cardwell JH, Graham MM, et al. Nonivasive detection of hypoxic myocardium using [18F]fluoromisonidazole and PET. J Nucl Med 1992; 33: 2202–2208.PubMedGoogle Scholar
  49. 49.
    Yeh SH, Liu RS, Hu HH, et al. Ischemic penumbra in acute stroke: demonstration by PET with fluorine-18 fluoromisonidazole. J Nucl Med 1994;35: 5:205 (abst).Google Scholar
  50. 50.
    Yeh SH, Liu RS, Wu LC, et al. Fluorine-18 fluoromisonidazole tumour to muscle retention ratio for the detection of hypoxia in nasopharyngeal carcinoma. Eur J Nucl Med 1996; 23 (10): 1378–1383.PubMedCrossRefGoogle Scholar
  51. 51.
    Liu RS, Yeh SH, Chang CP, et al. Detection of odontogenic infections by [F-18]fluoromisonidazole. J Nucl Med 1994;35:5:113 (abst).Google Scholar
  52. 52.
    Yang DJ, Wallace S, Cherif A, et al. Development of F-18-labeled fluoroerythronitroimidazole as a PET agent for imaging tumor hypoxia. Radiology 1995; 194: 795–800.PubMedGoogle Scholar
  53. 53.
    Cherif A, Wallace S, Yang DJ, et al. Development of new markers for hypoxic cells: [131I]iodomisonidazole and [131I]iodoerythronitroimidazole. J Drug Targeting 1996; 4 (1): 31–39.CrossRefGoogle Scholar
  54. 54.
    Inoue T, Yang DJ, Wallace S, et al. Evaluation of [131I]iodoerythronitroimidazole as a predictor for the radiosensitizing effect. Anticancer Drugs 1996; 7 (8): 858–865.PubMedCrossRefGoogle Scholar
  55. 55.
    Podo F. Tumor phospholipid metabolism. NMR Biomed 1999; 12: 413–439.PubMedCrossRefGoogle Scholar
  56. 56.
    Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon11-choline. J Nucl Med 1998; 39: 990–995.PubMedGoogle Scholar
  57. 57.
    Hara T, Kosaka N, Shinoura N, et al. PET imaging of brain tumor with [methyl-11C]choline. J Nucl Med 1997; 38: 842–847.PubMedGoogle Scholar
  58. 58.
    Hara T, Kosaka N, Kishi H, et al. Imaging of brain tumor, lung cancer, esophagus cancer, colon cancer, prostate cancer, and bladder cancer with [C-11]choline. J Nucl Med 1997; 38: 250 P.Google Scholar
  59. 59.
    Kotzerke J, Prang J, Neumaier B, et al. Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med 2000; 27: 1415–1419.PubMedCrossRefGoogle Scholar
  60. 60.
    DeGrado TR, Baldwin SW, Wang S, et al. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med 2001; 42 (12): 1805–1814.PubMedGoogle Scholar
  61. 61.
    Price DT, Coleman RE, Liao RP, et al. Comparison of [18F]fluorocholine and [18F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol 2002; 168 (1): 273–280.PubMedCrossRefGoogle Scholar
  62. 62.
    DeGrado TR, Reiman RE, Price DT, et al. Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J Nucl Med 2002; 43 (1): 92–96.PubMedGoogle Scholar
  63. 63.
    Haberkorn U, Khazaie K, Morr I, et al. Ganciclovir uptake in human mammary carcinoma cells expressing herpes simplex virus thymidine kinase. Nucl Med Biol 1998; 25: 367–373.PubMedCrossRefGoogle Scholar
  64. 64.
    Gambhir SS, Barrio JR, Wu L, et al. Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med 1998; 39: 2003–2011.PubMedGoogle Scholar
  65. 65.
    Gambhir SS, Barrio JR, Phelps ME, et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci USA 1999; 96: 2333–2338.PubMedCrossRefGoogle Scholar
  66. 66.
    Namavari M, Barrio JR, Toyokuni T, et al. Synthesis of 8-[18F]fluoroguanine derivatives: in vivo probes for imaging gene expression with positron emission tomography. Nucl Med Biol 2000; 27: 157–162.PubMedCrossRefGoogle Scholar
  67. 67.
    Gambhir SS, Bauer E, Black ME, et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci USA 2000; 97: 2785–2790.PubMedCrossRefGoogle Scholar
  68. 68.
    Iyer M, Barrio JR, Namavari M, et al. 8-[18F]Fluoropenciclovir: an improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using PET. J Nucl Med 2001; 42: 96–105.PubMedGoogle Scholar
  69. 69.
    Alauddin MM, Conti PS, Mazza SM, et al. 9-[(3-[18F]-Fluoro-1-hydroxy-2propoxy)methyl]guanine ([18F]-FHPG): a potential imaging agent of viral infection and gene therapy using PET. Nucl Med Biol 1996; 23: 787–792.PubMedCrossRefGoogle Scholar
  70. 70.
    Alauddin MM, Shahinian A, Kundu RK, et al. Evaluation of 9-[(3–18Ffluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]-FHPG) in vitro and in vivo as a probe for PET imaging of gene incorporation and expression in tumors. Nucl Med Biol 1999; 26: 371–376.PubMedCrossRefGoogle Scholar
  71. 71.
    Alauddin MM, Conti PS. Synthesis and preliminary evaluation of 9-(4[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG): a new potential imaging agent for viral infection and gene therapy using PET. Nucl Med Biol 1998; 25: 175–180.PubMedCrossRefGoogle Scholar
  72. 72.
    Yaghoubi S, Barrio JR, Dahlbom M, et al. Human pharmacokinetic and dosimetry studies of [18F]FHBG: a reporter probe for imaging herpes simplex virus type-1 thymidine kinase reporter gene expression. J Nucl Med 2001; 42: 1225–1234.PubMedGoogle Scholar
  73. 73.
    Yang DJ, Cherif A, Tansey W, et al. N,N-diethylfluoromethyltamoxifen: synthesis assignment of 1H and 13C spectra and receptor assay. Eur J Med Chem 1992; 27: 919–924.CrossRefGoogle Scholar
  74. 74.
    Yang D, Tewson T, Tansey W, et al. Halogenated analogs of tamoxifen: synthesis, receptor assay and inhibition of MCF7 cells. j Pharm Sci 1992; 81: 622–625.Google Scholar
  75. 75.
    Kim CG, Yang DJ, Kim EE, et al. Assessment of tumor cell proliferation using [18F]fluorodeoxyadenosine and [18F]fluoroethyluracil. J Pharm Sci 1996; 85 (3): 339–344.PubMedCrossRefGoogle Scholar
  76. 76.
    Cherif A, Yang DJ, Tansey W, et al. Radiosynthesis and biodistribution studies of [F-18]fluoroadenosine and [I-131]-5-iodo-2’-O-methyl-uridine for the assessment of tumor proliferation rate. Pharm Res 1995; 12 (9): 128.Google Scholar
  77. 77.
    Yang D, Wallace S. High affinity tamoxifen derivatives and uses thereof. U.S. Patent number 5,192, 525, 1993.Google Scholar
  78. 78.
    Yang D, Wallace S, Wright KC, et al. Imaging of estrogen receptors with PET using 18F-fluoro analogue of tamoxifen. Radiology 1992; 182: 185–186.Google Scholar
  79. 79.
    Yang DJ, Kuang L-R, Cherif A, et al. Synthesis of 18F-alanine and 18F-tamoxifen for breast tumor imaging. J Drug Targeting 1993; 1: 259–267.CrossRefGoogle Scholar
  80. 80.
    Yang DJ, Li C, Kuang L-R, et al. Imaging, biodistribution and therapy potential of halogenated tamoxifen analogues. Life Sci 1994;55:(1)53–67.PubMedCrossRefGoogle Scholar
  81. 81.
    Yang DJ, Wallace S. High affinity halogenated tamoxifen derivatives and uses thereof. U.S. Patent number 5,219, 548, 1993.Google Scholar
  82. 82.
    Inoue T, Kim EE, Wallace S, et al. Positron emission tomography using [18F]fluorotamoxifen to evaluate therapeutic responses in patients with breast cancer: preliminary study. Cancer Biother Radiopharm 1996; 11 (4): 235–245.PubMedCrossRefGoogle Scholar
  83. 83.
    Inoue T, Kim EE, Wallace S, et al. Preliminary study of cardiac accumulation of F-18 fluorotamoxifen in patients with breast cancer. Clin Imaging 1997; 21 (5): 332–336.PubMedCrossRefGoogle Scholar
  84. 84.
    Hanson RN, Seitz DE. Tissue distribution of the radiolabeled antiestrogen [125I]iodotamoxifen. Int J Nucl Med Biol 1982; 9: 105–107.PubMedCrossRefGoogle Scholar
  85. 85.
    Ram S, Spicer LD. Radioiodination of tamoxifen. J Labelled Compd Radiopharm 1989; 27: 661–668.CrossRefGoogle Scholar
  86. 86.
    Kangas L, Nieminen A-L, Blanco G, et al. A new triphenylethylene, FC-1157a, antitumor effects. Cancer Chemother Pharmacol 1986; 17: 109–113.PubMedCrossRefGoogle Scholar
  87. 87.
    Kallio S, Kangas L, Blanco G, et al. A new triphenylethylene, FC-1157a, hormonal effects. Cancer Chemother Pharmacol 1986; 17: 103–108.PubMedCrossRefGoogle Scholar
  88. 88.
    Kawai G, Yamamoto Y, Kamimura T, et al. Conformational rigidity of specific pyrimidine residues in tRNA arises from posttranscriptional modifications that enhance steric interaction between the base and the 2’-hydroxyl group. Biochemistry 1992; 31: 1040–1045.PubMedCrossRefGoogle Scholar
  89. 89.
    Uesugi S, Kaneyasu T, Ikehara M. Synthesis and properties of ApU analogues containing 2’-halo-2’-deoxyadenosine. Effect of 2’ substituents on oligonucleotide conformation. Biochem 1982; 21: 5870–5877.CrossRefGoogle Scholar
  90. 90.
    Ikehara M, Miki H. Studies of nucleosides and nucleotides. Cyclonucleosides. Synthesis and properties of 2’-halogeno-2’-deoxyadenosines. Chem Pharm Bull 1978; 26: 2449–2453.CrossRefGoogle Scholar
  91. 91.
    Inubushi M, Wu JC, Gambhir SS, et al. Positron-emission tomography reporter gene expression imaging in rat myocardium. Circulation 2003; 107 (2): 326–332.PubMedCrossRefGoogle Scholar
  92. 92.
    Tjuvajev JG, Doubrovin M, Akhurst T, et al. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med 2002; 43 (8): 1072–1083.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • David J. Yang
  • Tomio Inoue
  • E. Edmund Kim

There are no affiliations available

Personalised recommendations