A Hybrid Route from CMOS to Nano and Molecular Electronics

  • G. F. Cerofolini
  • D. Mascolo
Part of the Nanostructure Science and Technology book series (NST)


The exponential increase of complexity of integrated circuits (ICs) has already (2005) allowed the production of approximately 10 µmol (≈ 6 × 1018) of transistors; if the current trend toward higher and higher integration continues, an Avogadro number of transistors will be manufactured in the next 20 years–in a way, microelectronics is already “molecular” electronics, if not for the transistor size for the number of transistors at least. Hence, the following question: Is there indeed a need of genuine molecular electronics?


Flash Memory Sacrificial Layer Memory Element Chemical Vapor Deposition Process Redox Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.E. Moore, Obituary: Robert N. Noyce, Phys. Today 44(1), 83 (1991).CrossRefGoogle Scholar
  2. 2.
    G.E. Moore, Cramming more components onto integrated circuits, Electronics 38, 114–117 (1965).Google Scholar
  3. 3.
    G.E. Moore, Progress in digital integrated electronics, IEDM Tech. Dig. 11–13 (1975).Google Scholar
  4. 4.
    J. Birnbaum and R.S. Williams, Physics and the information revolution, Phys. Today 53(1), 38–42 (2000).CrossRefGoogle Scholar
  5. 5.
    E. Ross, The dramatic shift to semiconductor foundries: From zero to 50% in 30 years, Future Fab Int. Issue 17 (2001), available at Scholar
  6. 6.
    P. Gargini, Sailing with the ITRS into nanotechnology, Semicon West (July 2004), available at Scholar
  7. 7.
    G.F. Cerofolini, The evolution of IC technology and the need of new substrates, in Chemistry for Innovative Materials, edited by G.F. Cerofolini, R.M. Mininni, and P. Schwarz, EniChem, Milano, 1991, pp. 64–83.Google Scholar
  8. 8.
    G.F. Cerofolini, L. Meda, and M. Sparpaglione, Substrates: The material bases of microelectronics and nanoelectronics, Prog. Quant. Electr. 17, 273–298 (1993).CrossRefGoogle Scholar
  9. 9.
    A.D. Wilson, Lithography requirements in complex VLSI device fabrication, in The Physics of VLSI, edited by J.C. Knights, American Institute of Physics, New York, 1984, pp. 69–91.Google Scholar
  10. 10.
    J.D. Plummer and P.B. Griffin, Material and process limits in silicon VLSI technology, Proc. IEEE 89, 240–258 (2001).CrossRefGoogle Scholar
  11. 11.
    A.I. Kingon, J.-P. Maria, and S.K. Streiffer, Alternative dielectrics to silicon dioxide for memory and logic devices, Nature 406, 1032–1038 (2000).CrossRefGoogle Scholar
  12. 12.
    T. Homma, Low dielectric constant materials and methods for interlayer dielectric films in ultralarge-scale integrated circuit multilevel interconnections, Mater. Sci. Eng. R 23, 243–285 (1998).CrossRefGoogle Scholar
  13. 13.
    G.F. Cerofolini, Strategies for ultralow-κ dielectrics for integrated-circuit interconnects, Mater. Sci. Semicond. Process. 5, 265–270 (2003).CrossRefGoogle Scholar
  14. 14.
    S.P. Murarka, Multilevel interconnections for ULSI and GSI era, Mater. Sci. Eng. R 19, 87–151 (1997).CrossRefGoogle Scholar
  15. 15.
    J.A. Davis, R. Venkatesan, A. Kaloyeros, M. Beylansky, S.J. Souri, K. Banerjee, K.C. Saraswat, A. Rahman, R. Reif, and J.D. Meindl, Interconnect limits on gigascale integration (GSI) in the 21st century, Proc. IEEE 89, 305–324 (2001).CrossRefGoogle Scholar
  16. 16.
    Semiconductor Industry Association (SIA), International Technology Roadmap for Semiconductors. 2005 Edition; available at Scholar
  17. 17.
    J.A. Hutchby, G.I. Bourianoff, V.V. Zhirnov, and J.E. Brewer, Extending the road beyond CMOS, IEEE Circuits Dev. Mag. 18(2), 28–41 (2002).CrossRefGoogle Scholar
  18. 18.
    Y.-K. Choi, T.-J. King, and C. Hu, A spacer patterning technology for nanoscale CMOS, IEEE Trans. Electron Devices 49, 436–441 (2002).CrossRefGoogle Scholar
  19. 19.
    C.M. Garner, Technology challenges & chemicals (2004), available at Scholar
  20. 20.
    R.W. Keyes, Physical limits in semiconductor electronics, Science 195, 1230–1235 (1977).CrossRefGoogle Scholar
  21. 21.
    L. Baldi, and G.F. Cerofolini, La legge di Moore e lo sviluppo dei circuiti integrati, Mondo Digitate 1(3), 3–15 (2002) (in Italian).Google Scholar
  22. 22.
    P.A. Packan, Pushing the limits, Science 285, 2079–281 (1999).CrossRefGoogle Scholar
  23. 23.
    P.S. Peercy, The drive to miniaturization, Nature 406, 1023–1026 (2000).CrossRefGoogle Scholar
  24. 24.
    R.W. Keyes, Fundamental limits of silicon technology, Proc. IEEE 89, 227–239 (2001).CrossRefGoogle Scholar
  25. 25.
    D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, and H.-S.P. Wong, Device scaling limits of Si MOSFETs and their application dependencies, Proc. IEEE 89,259–288 (2001).CrossRefGoogle Scholar
  26. 26.
    T. Ito and S. Okazaki, Pushing the limits of lithography, Nature 406, 1027–1031 (2000).CrossRefGoogle Scholar
  27. 27.
    L.R. Harriott, Limits of lithography, Proc. IEEE 89, 366–374 (2001).CrossRefGoogle Scholar
  28. 28.
    S. Lloyd, Ultimate physical limits to computations, Nature 406, 1047–1054 (2000).CrossRefGoogle Scholar
  29. 29.
    Y. Aharonov and D. Bohm, Time in quantum theory and the uncertainty relation for the time and energy domain, Phys. Rev. 122, 1649–1658 (1961).CrossRefGoogle Scholar
  30. 30.
    V.V. Zhirnov, R.K. Cavin, J.A. Hutchby, and G.I. Bourianoff, Limits to binary logic switch scaling—a gedanken model, Proc. IEEE 91, 1934–1939 (2003).CrossRefGoogle Scholar
  31. 31.
    J.D. Meindl and J.A. Davis, The fundamental limit on binary switching energy for terascale integration (TSI), IEEE J. Solid-State Circuits 35, 1515–1516 (2000).CrossRefGoogle Scholar
  32. 32.
    R.W. Landauer, Irreversibility and heat generation in the computing process, IBM J. Res. Dev. 5,183–191 (1961).CrossRefGoogle Scholar
  33. 33.
    D.I. Gittins, D. Bethell, D.J. Schiffrin, and R.J. Nichols, A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups, Nature 408, 67–69 (2000).CrossRefGoogle Scholar
  34. 34.
    S. Becker and K. Müllen, Nanochemistry—Architecture at the mesoscale, in Stimulating Concepts in Chemistry, edited by F. Vögtle, J.F. Stoddart, and M. Shibasaki, Wiley-VCH, Weinheim, 2000, pp. 317–337.CrossRefGoogle Scholar
  35. 35.
    B.A. Mantooth and P.S. Weiss, Fabrication, assembly, and characterization of molecular electronic components, Proc. IEEE 91, 1785–1802 (2003).CrossRefGoogle Scholar
  36. 36.
    M.A. Reed, Prospects for molecular-scale electronics, MRS Bull. 26(2), 113–120 (2001).Google Scholar
  37. 37.
    A. Aviram and M. Ratner, Molecular rectfiers, Chem. Phys. Lett. 29, 277–283 (1974).CrossRefGoogle Scholar
  38. 38.
    N. van Gulick, Theoretical aspects of the linked ring problem, New J. Chem. 17, 619–625 (1993); originally presented at the Reaction Mechanisms Conference held in Princeton, NJ, in 1960.Google Scholar
  39. 39.
    H.L. Frisch and E. Wasserman, Chemical topology, J. Am. Chem. Soc. 83, 3789–3795 (1961).CrossRefGoogle Scholar
  40. 40.
    D.M. Walba, Topological chemistry, Tetrahedron 41, 3161–3212 (1985).CrossRefGoogle Scholar
  41. 41.
    J.-P. Sauvage, Interlacing molecular threads on transition metals: Catenands, catenates, and knots, Acc. Chem. Res. 23, 319–327 (1990).CrossRefGoogle Scholar
  42. 42.
    A. Credi, V. Balzani, S.J. Langford, and J.F. Stoddard, Molecular logic. An XOR gate based on a mechanical molecular machine, J. Am. Chem. Soc. 119, 2679–2681 (1997).CrossRefGoogle Scholar
  43. 43.
    V. Balzani, M. Gomez-Lopez, and J.F. Stoddart, Molecular machines, Acc. Chem. Res. 31, 405–414 (1998).CrossRefGoogle Scholar
  44. 44.
    A.S. Martin, J.R. Sambles, and G.J. Ashwell, Molecular rectifier, Phys. Rev. Lett. 70, 218–221 (1993).CrossRefGoogle Scholar
  45. 45.
    C. Joachim, J.K. Gimzewski, and A. Aviram, Electronics using hybrid-molecular and mono-molecular devices, Nature 408, 541–548 (2000).CrossRefGoogle Scholar
  46. 46.
    C.P. Collier, E.W. Wong, M. Belohradsky, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, and J. R. Heath, Electronically configurable molecular-based logic gates, Science 285, 391–394 (1999).CrossRefGoogle Scholar
  47. 47.
    C.P. Collier, G. Mattersteing, E.W. Wong, Y. Luo, K. Beverly, J. Sampaio, F.M. Raymo, J.F. Stoddart, and J.R. Heath, A [2]Catenane-based solid state electronically reconfigurable switch, Science 289, 1172–1175 (2000).CrossRefGoogle Scholar
  48. 48.
    M.R. Stan, P.D. Franzon, S.C. Goldstein, J.C. Lach, and M.M. Ziegler, Molecular electronics: From devices and interconnect to circuits and architecture, Proc. IEEE 91, 1940–1957 (2003).CrossRefGoogle Scholar
  49. 49.
    Y. Luo, C.P. Collier, J.O. Jeppesen, K.A. Nielsen, E. Delonno, G. Ho, J. Perkins, H.-R. Tseng, T. Yamamoto, J.F. Stoddart, and J.R. Heath, Two-dimensional molecular electronics circuits, Chem. Phys. Chem. 3, 519–525 (2002).Google Scholar
  50. 50.
    L.J. Guo, Recent progress in nanoimprint technology and its applications, J. Phys. D: Appl. Phys. 37, R123–R141 (2004).CrossRefGoogle Scholar
  51. 51.
    Y. Chen, D.A.A. Ohlberg, X. Li, D.R. Stewart, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, D.L. Olynick, and E. Anderson, Nanoscale molecular-switch devices fabricated by imprint lithography, Appl. Phys. Lett. 82, 1610–1612 (2003).CrossRefGoogle Scholar
  52. 52.
    Y. Chen, G.Y. Jung, D.A.A. Ohlbergl, X. Li, D.R. Stewart, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart and R.S. Williams, Nanoscale molecular-switch crossbar circuits, Nanotechnology 14, 462–468 (2003).CrossRefGoogle Scholar
  53. 53.
    D.R. Stewart, D.A.A. Ohlberg, P. Beck, Y. Chen, R.S. Williams, J.O. Jeppesen, K.A. Nielsen, and J.F. Stoddart, Molecule-independent electrical switching in Pt/organic monolayer/Ti devices, Nano Lett. 4, 133–136 (2004).CrossRefGoogle Scholar
  54. 54.
    C.N. Lau, D.R. Stewart, R.S. Williams, and D. Bockrath, Direct observation of nanoscale switching centers in metal/molecule/metal structures, Nano Lett. 4, 569–572 (2004).CrossRefGoogle Scholar
  55. 55.
    R.F. Service, Next-generation technology hits an early midlife crisis, Science 302, 556–559 (2003).CrossRefGoogle Scholar
  56. 56.
    G. F. Cerofolini and G. Ferla, Toward a hybrid micro-nanoelectronics, J. Nanoparticle Res. 4, 185–191 (2002).CrossRefGoogle Scholar
  57. 57.
    J. M. Tour, Molecular wires and devices, in Stimulating Concepts in Chemistry, edited by F. Vögtle, J.F. Stoddart, and M. Shibasaki, Wiley-VCH, Weinheim, 2000, pp. 237–253.Google Scholar
  58. 58.
    Anon., Patent office takes small step to get the measure of nanotech, Nature 432, 8 (2004).Google Scholar
  59. 59.
    Y.-K. Choi, J. Zhu, J. Grunes, J. Bokor, and G. A. Somorjai, Fabrication of sub-10-nm silicon nanowire arrays by size reduction lithography, J. Phys. Chem. B 107, 3340–3343 (2003).CrossRefGoogle Scholar
  60. 60.
    G.F. Cerofolini, G. Arena, M. Camalleri, C. Galati, S. Reina, L. Renna, D. Mascolo, and V. Nosik, Strategies for nanoelectronics, Microelectr. Eng. 81, 405–419 (2005).CrossRefGoogle Scholar
  61. 61.
    G.F. Cerofolini, G. Arena, M. Camalleri, C. Galati, S. Reina, L. Renna, and D. Mascolo, A hybrid approach to nanoelectronics, Nanotechnology 16, 1040–1047 (2005).CrossRefGoogle Scholar
  62. 62.
    W.R. Hunter, T.C. Holloway, P.K. Chatterjee, and A.F. Tasch, Jr., New edge-defined approach for submicrometer MOSFET fabrication, IEEE Electron Device Lett. 2, 4–6 (1981).CrossRefGoogle Scholar
  63. 63.
    D.C. Flanders and N.N. Efremow, Generation of < 50 nm period gratings using edge defined technique, J. Vac. Sci. Technol. B 1, 1105–1108 (1983).CrossRefGoogle Scholar
  64. 64.
    U. Hilleringmann, T. Vieregge, and J.T. Horstmann, Masking and etching of siilicon and related materials for geometries down to 25 nm, IECON99 Conference Proceedings Vol. 1, IEEE Industrial Electronics Society, Piscataway, NJ, 1999, pp. S. 23–28.Google Scholar
  65. 65.
    J.T. Horstmann, U. Hilleringmann, and K. Goser, Matching analysis of NMOS-transistors with a channel lenght down to 30 nm, IECON99 Conference Proceedings Vol. 1, IEEE Industrial Electronics Society, Piscataway, NJ, 1999, pp. S. 56–61.Google Scholar
  66. 66.
    G.F. Cerofolini, Nano-mesoscopic interface: Hybrid devices, in Encyclopedia of Nanoscience and Nanotechnology, edited by J.A. Schwarz, C. Contescu, and K. Putyera, Dekker, New York, 2004, pp. 2211–2219.Google Scholar
  67. 67.
    S.F. Bent, Organic functionalization of group IV semiconductor surfaces: Principles, examples, applications, and prospects, Surf. Sci. 500, 879–903 (2002).CrossRefGoogle Scholar
  68. 68.
    J.M. Buriak, Organometallic chemistry on silicon and germanium surfaces, Chem. Rev. 102, 1271–1308 (2002).CrossRefGoogle Scholar
  69. 69.
    G. Cleland, B.R. Horrocks, and A. Houlton, Direct functionalization of silicon via the self-assembly of alcohols, J. Chem. Soc. Faraday Trans. 91, 4001–4003 (1995).CrossRefGoogle Scholar
  70. 70.
    A. Ulman, Self-assembled monolayers of alkyltrichlorosilanes: Building block for future organic materials, Adv. Mater. 2, 573–582 (1990).CrossRefGoogle Scholar
  71. 71.
    C.A. Roth, Silylation of organic chemicals, Ind. Eng. Chem. Prod. Res. Dev. 11, 134–139 (1972).CrossRefGoogle Scholar
  72. 72.
    M.P. Stewart, F. Maya, D.V. Kosynkin, S.M. Dirk, J.J. Stapleton, C.L. McGuiness, D.L. Allara, and J.M. Tour, Direct covalent grafting of conjugated molecules onto Si, GaAs and Pd surfaces from aryldiazonium salts, J. Am. Chem. Soc. 126, 370–378 (2004).CrossRefGoogle Scholar
  73. 73.
    A.B. Sieval, R. Linke, H. Zuilhof, and E.J.R. Sudhölter, High-quality alkyl monolayers on silicon surfaces, Adv. Mater. 12, 1457–1460 (2000).CrossRefGoogle Scholar
  74. 74.
    H. Ubara, T. Imura, and A. Hiraki, Formation of Si-H bonds on the surface of micro-crystalline silicon covered with SiOx by HF treatment, Solid State Commun. 50, 673–675 (1984).CrossRefGoogle Scholar
  75. 75.
    J.S. Hovis and R.J. Hamers, Structure and bonding of ordered organic monolayers of 1,5-cyclooctadiene on the silicon(100) surface, J. Phys. Chem. B 101, 9581–9585 (1997).CrossRefGoogle Scholar
  76. 76.
    H. Liu and R. J. Hamers, An X-ray photoelectron spectroscopy study of the bonding of unsaturated organic molecules to the Si(100) surface, Surf. Sci. 416, 354–362 (1998).CrossRefGoogle Scholar
  77. 77.
    J. Terry, M.R. Linford, C. Wigren, R. Cao, P. Pianetta, and C.E.D. Chidsey, Electronic structure of alkyl monolayers on Si(111), J. Appl. Phys. 85, 213–221 (1999).CrossRefGoogle Scholar
  78. 78.
    A. Lehner, G. Steinhoff, M.S. Brandt, M. Eickhoff, and M. Stutzmann, Hydrosilylation of crystalline silicon (111) and hydrogenated amorphous silicon surfaces: A comparative X-ray photoelectron spectroscopy study, J. Appl. Phys. 94, 2289–2294 (2003).CrossRefGoogle Scholar
  79. 79.
    A.B. Sieval, A.L. Demirel, J.W.M. Nissink, M.R. Linford, J.H. van der Maas, W.H. de Jeu, H. Zuilhof, and E.J.R. Sudholter, Highly stable Si-C linked functionalized monolayers on the silicon (100) surface, Langmuir 14, 1759–1768 (1998).CrossRefGoogle Scholar
  80. 80.
    A.B. Sieval, V. Vleeming, H. Zuilhof, and E.J.R. Sudholter, An improved method for the preparation of organic monolayers of 1-alkenes on hydrogen-terminated silicon surfaces, Langmuir 15, 8288 (1999).CrossRefGoogle Scholar
  81. 81.
    M. Kosuri, H. Gerung, Q. Li, S.M. Han, B.C. Bunker, and T.M. Mayer, Vapor-phase adsorption kinetics of 1-decene on H-terminated Si(100), Langmuir 19, 9315–9320 (2003).CrossRefGoogle Scholar
  82. 82.
    F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th ed., Wiley, New York, 1988, p. 1255.Google Scholar
  83. 83.
    G.F. Cerofolini, C. Galati, S. Reina, and L. Renna, Functionalization of the (100) surface of hydrogen-terminated silicon via hydrosilation of 1-alkyne, Mater. Sci. Eng. C 23, 253–257 (2003).CrossRefGoogle Scholar
  84. 84.
    G.F. Cerofolini, C. Galati, S. Reina, and L. Renna, The addition of organic functional groups to silicon via hydrosilation of 1-alkynes to hydrogen-terminated, 1 × 1 reconstructed, (100) silicon surfaces, Semicond. Sci. Technol. 18, 423–429 (2003).CrossRefGoogle Scholar
  85. 85.
    G.F. Cerofolini, C. Galati, S. Reina, L. Renna, O. Viscuso, G.G. Condorelli, and I.L. Fragalà, X-ray photoemission spectroscopy study at different takeoff angles of hydrosilation of 1-alkynes at hydrogen-terminated 1 × 1-reconstructed (100)-oriented silicon, Mater. Sci. Eng. C 23, 989–994 (2003).CrossRefGoogle Scholar
  86. 86.
    G.F. Cerofolini, C. Galati, S. Reina, L. Renna, F. Giannazzo, and V. Raineri, Hydrosilation of 1-alkyne at nearly flat, terraced, homogeneously hydrogen terminated, (100) silicon surfaces, Surf. Interf. Anal. 36, 71–76 (2004).CrossRefGoogle Scholar
  87. 87.
    G.F. Cerofolini, C. Galati, S. Reina, L. Renna, G.G. Condorelli, I.L. Fragalà, G. Giorgi, A. Sgamellotti, and N. Re, Functionalization of atomically flat, dihydrogen terminated, 1 × 1 (100) silicon with 1-alkyne, Appl. Surf. Sci. 246, 52–67 (2005).CrossRefGoogle Scholar
  88. 88.
    Y. Huang, X. Duan, Y. Cui, LJ. Lauhon, K.-H. Kim, and C.M. Lieber, Logic gates and computation from assembled nanowire building blocks, Science 294, 1313–1317 (2001).CrossRefGoogle Scholar
  89. 89.
    Z. Zhong, D. Wang, Y. Cui, M.W. Bockrath, and C.M. Lieber, Nanowire crossbar arrays as address decoders for integrated nanosystems, Science 302, 1377–1379 (2003).CrossRefGoogle Scholar
  90. 90.
    M.M. Ziegler and M.R. Stan, CMOS/nano co-design for crossbar-based molecular electronic systems, IEEE Trans. Nanotechnol. 2, 217–230 (2003).CrossRefGoogle Scholar
  91. 91.
    A. DeHon, Array-based architecture for FET-based, nanoscale electronics, IEEE Trans. Nanotechnol. 2, 23–32 (2003).CrossRefGoogle Scholar
  92. 92.
    M. Forshaw, R. Sadler, D. Crawley, and K. Nikolić, A short review of nanoelectronic architectures, Nanotechnology 15, S220–S223 (2004).CrossRefGoogle Scholar
  93. 93.
    G.F. Cerofolini and L. Meda, Physical Chemistry of in and on Silicon, Springer-Verlag, Berlin, 1989, Chap. 10.Google Scholar
  94. 94.
    A.M. Stoneham, The challenges of nanostructures for theory, Mater. Sci. Eng. C 23, 235–241 (2003).CrossRefGoogle Scholar
  95. 95.
    J.K. Gimzewski and C. Joachim, Nanoscale science of single molecules using local probes, Science 283, 1683–1688 (1999).CrossRefGoogle Scholar
  96. 96.
    R. Brown, J. Gallop, and M. Milton, Review of techniques for single molecule detection in biological application, NPL Report COAM 2, National Physical Laboratory, Teddington, UK, 2001.Google Scholar
  97. 97.
    M. Orrit, Single-molecule spectroscopy: The road ahead, J. Chem. Phys. 11, 10,938–19,946 (2002).CrossRefGoogle Scholar
  98. 98.
    S. Datta, Electrical resistance: An atomistic view, Nanotechnology 15, S433–S451 (2004).CrossRefGoogle Scholar
  99. 99.
    E. Joos, in Decoherence and the Appearance of a Classical World in Quantum Theory, edited by D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu, and H. D. Zeh, Springer-Verlag, Berlin, 1996, Chap. 3.Google Scholar
  100. 100.
    R Pavan, R. Bez, P. Olivo, and E. Zanoni, Flash memory cells—An overview, Proc. IEEE 85, 1248–1271 (1997).CrossRefGoogle Scholar
  101. 101.
    R. Camerlenghi, A. Modelli, A. Visconti, and R. Bez, Introduction to flash memory, Proc. IEEE 91, 489–502 (2003).CrossRefGoogle Scholar
  102. 102.
    D. Segal, A. Nitzan, M. Ratner, and W.B. Davis, Activated conduction in microscopic molecular junctions, J. Phys. Chem. B 104, 2790–2793 (2000).CrossRefGoogle Scholar
  103. 103.
    D. Segal and A. Nitzan, Steady state quantum mechanics of thermally relaxing systems, Chem. Phys. 268, 315–335 (2001).CrossRefGoogle Scholar
  104. 104.
    D. Segal and A. Nitzan, Heating in current carrying molecular junctions, J. Chem. Phys. 117, 3915–3927 (2002).CrossRefGoogle Scholar
  105. 105.
    A.S. Alexandrov and AM. Bratkovsky, Memory effect in a molecular quantum dot with strong electron-vibron interaction, Phys. Rev. B 67, 235312-1–8 (2003).Google Scholar
  106. 106.
    C. Joachim and M. A. Ratner, Molecular wires: Guiding the super-exchange interactions between two electrodes, Nanotechnology 15, 1065–1075 (2004).CrossRefGoogle Scholar
  107. 107.
    W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. Physik 43, 172–198 (1927). English translation: The physical content of quantum kinematics and mechanics, in Quantum Theory and Measurement, edited by J. A. Wheeler and W.H. Zurek, Princeton University Press, Princeton, NJ, 1983, pp. 62–84.CrossRefGoogle Scholar
  108. 108.
    G. Ludwig, Foundations of Quantum Mechanics. I, Springer-Verlag, New York, 1983.Google Scholar
  109. 109.
    N. Bohr, The quantum postulate and the recent development of atomic theory, Nature 121, 580–590 (1928); reprinted in N. Bohr, Atomic Theory and the Description of Nature, Cambridge University Press, Cambridge, 1934, pp. 52–91.CrossRefGoogle Scholar
  110. 110.
    J. von Neumann, Mathematischen Grundlagen der Quantenmechanik, Springer-Verlag, Berlin, 1932, pp. 184–237. English translation: Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, NJ, 1955, pp. 347–445.Google Scholar
  111. 111.
    L. Szilard, Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen, Z. Physik 53, 840–856 (1929). English translation: On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings, Behav. Sci. 9, 301–310 (1964).CrossRefGoogle Scholar
  112. 112.
    A. Daneri, A. Loinger, and G.M. Prosperi, Quantum theory of measurement and ergodicity conditions, Nucl Phys. 33, 297–319 (1962).CrossRefGoogle Scholar
  113. 113.
    G.F. Cerofolini, The calorimetric detection of rare events in the cryogenic regime, Appl. Phys. A 51, 467–475 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • G. F. Cerofolini
    • 1
  • D. Mascolo
    • 1
  1. 1.STMicroelectronicsPost-Silicon TechnologyAgrate MIItaly

Personalised recommendations