Strategies of Nanoscale Semiconductor Lasers

  • Samuel S. Mao
Part of the Nanostructure Science and Technology book series (NST)


Semiconductor lasers are in many ways second only to transistors as to their impact on today’s high-tech industries. The unique characteristics, such as narrow emission wavelength, high-frequency modulation, and device integratibility, make semiconductor lasers ideal photon sources for applications as diverse as telecommunication, signal processing, material characterization, and medical diagnostics. Advances in material growth technologies, particularly molecular-beam epitaxy, metal-organic chemical vapor deposition, and a suite of innovative chemical and physical synthesis techniques, make the fabrication of high-quality nanoscale semiconductor structures possible. Thanks to the quantum size effects that drastically modify the energy spectra of confined electrons in reduced dimensions, the population inversion necessary for lasing action occurs more efficiently as the active semiconductor gain medium is scaled down from the bulk to the nanometer scale. Consequently, semiconductor lasers built with nanoscale active media are expected to exhibit extraordinary features such as great color range, high optical gain, and low lasing threshold. Indeed, miniaturized lasers using nanoscale semiconductor gain media—two-dimensional quantum wells, one-dimensional quantum wires, and zero-dimensional quantum dots—have shown significant improvements in device Performance. This chapter provides an overview of the physics and technologies behind the rapid progress in the miniaturization of semiconductor lasers.


Semiconductor Laser Quantum Wire Quantum Cascade Laser Threshold Current Density Optical Confinement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. von Neumann, Notes on the photon disequilibrium amplification scheme, Sept 16, 1953, IEEEJ. Quantum Electron. 23, 659 (1987).Google Scholar
  2. 2.
    R.N. Hall, G.E. Fenner, J.D. Kingsley, T.J. Soltys, and R.O. Carlson, Phys. Rev. Lett. 9, 366 (1962).Google Scholar
  3. 3.
    N. Holonyak, Jr. and S.F. Bevacqua, Appl. Phys. Lett. 1, 82 (1962).Google Scholar
  4. 4.
    M.L Nathan, W.R Dumke, G. Bums, RH. Dill, Jr., and G. Lasher, Appl. Phys. Lett. 1, 62 (1962).Google Scholar
  5. 5.
    T.M. Quist, R.H. Rediker, R.J. Keyes, W.E. Krag, B. Lax, A.L. McWhorter, and H.J. Zeiger, Appl. Phys. Lett. 1, 91 (1962).Google Scholar
  6. 6.
    H. Kroemer, Proc. IEEE 51, 1782 (1963).Google Scholar
  7. 7.
    Z.I. Alferov and R.F. Kazarinov, U.S.S.R. Patent 181737 (1963).Google Scholar
  8. 8.
    J.M. Woodall, H. Rupprecht, and G.D. Petit, IEEE Trans. Electron. Dev. 14, 630 (1967).Google Scholar
  9. 9.
    Z.I. Alferov, V.M. Andreev, D.Z. Garbuzov, Y.V. Zhilhayev, E.P. Morozov, E.L. Portnoi, V.G. Trofim, Sov. Phys. Semicond. 4, 1573 (1971).Google Scholar
  10. 10.
    I. Hayashi, M.B. Panish, P.W. Foy, and S. Sumski, Appl. Phys. Lett. 17, 109 (1970).Google Scholar
  11. 11.
    P. Yu and M. Cardona. Fundamentals of Semiconductors: Physics and Material Properties, Springer-Verlag, Berlin, 2001.Google Scholar
  12. 12.
    M.G.A. Bernard and G. Duraffourg, Phys. Status Solidi 1, 699 (1961).Google Scholar
  13. 13.
    N.G. Basov, O.N. Krokhin, and Y.M. Popov, JETP 40, 1320 (1961).Google Scholar
  14. 14.
    Y Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).Google Scholar
  15. 15.
    M. Asada, Y. Miyamoto, and Y. Suematsu, IEEEJ. Quantum Electron. 22, 1915 (1986).Google Scholar
  16. 16.
    Y. Nambu and K. Asakawa, Appl. Phys. Lett. 67, 1509 (1995).Google Scholar
  17. 17.
    H.J. Eisler, V.C. Sundar, M.G. Bawendi, M. Walsh, H.I. Smith, and V. Klimov, Appl. Phys. Lett. 80, 4614 (2002).Google Scholar
  18. 18.
    J.-P. Laude, DWDM Fundamentals, Components, and Applications, Artech, London, 2002.Google Scholar
  19. 19.
    C.B. Murray, D.G. Norms, and M.G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).Google Scholar
  20. 20.
    A.L. Efros and M. Rosen, Annu. Rev. Mater. Sci. 30, 475 (2000).Google Scholar
  21. 21.
    L.E. Brus, J. Chem. Phys. 80, 4403 (1984).Google Scholar
  22. 22.
    L.E. Brus, J. Chem. Phys. 90, 2555 (1986).Google Scholar
  23. 23.
    E. Kapon, Proc. IEEE 80, 398 (1992).Google Scholar
  24. 24.
    J.T. Verdeyen, Laser Electronics, 3rd ed., Prentice-Hall, Englewood Cliffs, NJ, 1995.Google Scholar
  25. 25.
    A. Yariv, Optical Electronics in Modern Communications, 5th ed., Oxford University Press, New York, 1997.Google Scholar
  26. 26.
    G.T. Liu, A. Stintz, H. Li, K.J. Malloy, and L.F. Lester, Electron. Lett. 35, 1163 (1999).Google Scholar
  27. 27.
    L.F. Lester, A. Stintz, H. Li, T.C. Newell, E.A. Pease, B.A. Fuchs, and K. Malloy, IEEE Photon. Tech. Lett. 11, 931 (1999).Google Scholar
  28. 28.
    P.G. Eliseev, H. Li, A. Stintz, G.T. Liu, T.C. Newell, K.J. Maloy, and L. Lester, Appl. Phys. Lett. 11, 262 (2000).Google Scholar
  29. 29.
    K. Iga, IEEEJ. Select. Topics Quantum Electron. 6, 1201 (2000).Google Scholar
  30. 30.
    A. Yariv, Appl. Phys. Lett. 53, 1033 (1988).Google Scholar
  31. 31.
    Y. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, IEEE J. Quantum Electron. 25, 2001 (1985).Google Scholar
  32. 32.
    M. Asada, Y. Miyamoto, and Y. Suematsu, Jpn. J. Appl. Phys. 24, L95 (1985).Google Scholar
  33. 33.
    Z. Alferov, IEEEJ. Select. Topics Quantum Electron. 6, 832 (2000).Google Scholar
  34. 34.
    P.S. Zory, Jr., ed., Quantum Well Lasers, Academic, San Diego, CA, 1993.Google Scholar
  35. 35.
    S.S. Mao, Int. J. Nanotechnol. 1, 42, 2004.Google Scholar
  36. 36.
    N.N. Ledentsov, IEEE J. Select. Topics Quantum Electron. 8, 1015 (2002).Google Scholar
  37. 37.
    Y. Arakawa, Trans. IEICE E85, 37 (2002).Google Scholar
  38. 38.
    N.N. Ledentsov, Semiconductors 33, 946 (1999).Google Scholar
  39. 39.
    S. Sugou, Y. Kato, H. Nishimoto, and K. Kasahara, Electron. Lett. 22, 1214 (1986).Google Scholar
  40. 40.
    T. Ohtoshi and N. Chinone, Electron. Lett. 21, 12 (1991).Google Scholar
  41. 41.
    J. Coleman, R.M. Lammert, M.L. Osowski, and A.M. Jones, IEEEJ. Select. Topics Quantum Electron. 3, 874 (1997).Google Scholar
  42. 42.
    Y. Yoshida, H. Watanabe, K. Shibata, A. Takemoto, and H. Higuchi, IEEE J. Quantum Electron. 35, 1332 (1999).Google Scholar
  43. 43.
    D.Z. Garbuzov, N.Y Antonishkis, A.D. Bondarev, A.B. Gulakov, S.Z. Zhigulin, N.I. Katsavets, A.V. Kochergin, and E.V. Rafailov, IEEEJ. Quantum Electron. 27, 1531 (1991).Google Scholar
  44. 44.
    M.C. Wu, Y.K. Chen, M. Hong, J.P. Mannaerts, M.A. Chin, and A.M. Sergent, Appl. Phys. Lett. 59, 1046 (1991).Google Scholar
  45. 45.
    S.R. Chinn, Appl. Opt. 23, 3508 (1984).Google Scholar
  46. 46.
    S. Ghosh, P. Bhattacharya, E. Stoner, H. Jiang, J. Singh, S. Nuttinck, and J. Laskar, Appl. Phys. Lett. 79, 722 (2001).Google Scholar
  47. 47.
    J.L. Jewell, J.P. Harbison, A. Scherer, Y.H. Lee, and L.T. Florez, IEEE J. Quantum Electron. 27, 1332 (1991).Google Scholar
  48. 48.
    H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, Jpn. J. Appl Phys. 18, 2329 (1979).Google Scholar
  49. 49.
    K. Iga, S. Ishikawa, S. Ohkouchi, and T. Nishimura, Appl. Phys. Lett. 45, 348 (1984).Google Scholar
  50. 50.
    F. Koyama, S, Kinoshita, and K. Iga, Appl. Phys. Lett. 55, 221 (1989).Google Scholar
  51. 51.
    H. Kogelnik and C.V. Shanks, J. Appl. Phys. 43, 2327 (1972).Google Scholar
  52. 52.
    Y.H. Lee, J.L. Jewell, A. Scherer, S.L. McCall, J.P. Harbison, and L.T. Florez, Electron. Lett. 25, 1377 (1989).Google Scholar
  53. 53.
    L.A. Coldren and S.W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley, New York, 1995.Google Scholar
  54. 54.
    D.I. Babic and S.W. Corzine, IEEE J. Quantum Electron. 28, 514 (1992).Google Scholar
  55. 55.
    D.L. Huffaker, L.A. Graham, H. Deng, and D.G. Deppe, IEEE Photon. Tech. Lett. 8, 974 (1996).Google Scholar
  56. 56.
    E.F. Schubert, L.W. Lu, G.J. Zydzik, R.F. Kopf, A. Benvenuti, and M.R. Pinto, Appl. Phys. Lett. 60, 466 (1992).Google Scholar
  57. 57.
    S.A. Chalmers, K.L. Lear, and K.P. Killeen, Appl. Phys. Lett. 62, 1585 (1993).Google Scholar
  58. 58.
    M.G. Peters, B.J. Thibeault, D.B. Young, J.W. Scott, F.H. Peters, A.C. Gossard, and L.A. Coldren, Appl. Phys Lett. 63, 3411 (1993).Google Scholar
  59. 59.
    E.R. Hegblom, D.I. Babic, B.J. Thibeault, and L.A. Coldren, IEEEJ. Select. Topics Quantum Electron. 3, 379 (1997).Google Scholar
  60. 60.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).Google Scholar
  61. 61.
    S. John, Phys. Rev. Lett. 58, 2486 (1987).Google Scholar
  62. 62.
    H.-Y. Ryu, H.-G. Park, and Y-H. Lee, IEEE J. Select. Topics Quantum Electron. 8, 891 (2002).Google Scholar
  63. 63.
    J.D. Jackson, Classical Electrodynamics Wiley, New York, 1962.Google Scholar
  64. 64.
    J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals, Princeton University Press, Princeton, NJ, 1995.Google Scholar
  65. 65.
    O.J. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, Science 284, 1819 (1999).Google Scholar
  66. 66.
    O.J. Painter, A. Husain, A. Scherer, J.D. O’Brien, I. Kim, and P.D. Dapkus, J. Lightwave Tech. 17, 2082 (1999).Google Scholar
  67. 67.
    J.K. Hwang, H.Y. Ryu, D.S. Song, I.Y Han, H.W. Song, H.K. Park, Y.H. Lee, and D.H. Jang, Appl. Phys. Lett. 76, 2982 (2000).Google Scholar
  68. 68.
    J.K. Hwang, H.Y. Ryu, D.S. Song, I.Y Han, H.K. Park, D.H. Jang, and Y.H. Lee, IEEE Photon. Tech. Lett. 12, 1295 (2000).Google Scholar
  69. 69.
    D.S. Song, S.H. Kim, H.G. Park, C.K. Kim, and Y.H. Lee, Appl. Phys. Lett. 80, 3901 (2002).Google Scholar
  70. 70.
    J. O’Brien, W. Kuang, P.-T. Lee, J.R. Cao, C. Kim, W Kim, Proc. SPIE 4942,193 (2003).Google Scholar
  71. 71.
    S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A. Logan, Appl. Phys. Lett. 60, 289 (1992).Google Scholar
  72. 72.
    M. Fujita, A. Sakai, and T. Baba, IEEE. J. Select. Topics Quantum Electron. 5, 673 (1999).Google Scholar
  73. 73.
    N.C. Frateschi and A.F.J. Levi, J. Appl. Phys. 80, 644 (1996).Google Scholar
  74. 74.
    A.F.J. Levi, Solid State Electron. 37, 1297 (1994).Google Scholar
  75. 75.
    B. Gayral, J.M. Gerard, A. Lemaitre, C. Dupuis, L. Manin, and J. L. Pelouard, Appl. Phys. Lett. 75, 1908 (1999).Google Scholar
  76. 76.
    M. Huang, S.S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E.R. Weber, R.E. Russo, and P. Yang, Science 292, 1897 (2001).Google Scholar
  77. 77.
    S.S. Mao, R.E. Russo, and P. Yang, Proc. SPIE 4608, 225 (2001).Google Scholar
  78. 78.
    G.C. Osbourn, J. Appl. Phys. 53, 1586 (1982).Google Scholar
  79. 79.
    A. Cho, J. Vac. Sei. Technol. 8, S31 (1971).Google Scholar
  80. 80.
    A.Y. Cho, Appl. Phys. Lett. 19, 467 (1971).Google Scholar
  81. 81.
    H.M. Manasevit, Appl. Phys. Lett. 12, 156 (1968).Google Scholar
  82. 82.
    R.D. Dupuis and P.D. Dapkus, Appl. Phys. Lett. 31, 466 (1977).Google Scholar
  83. 83.
    M.B. Panish, H. Temkin, and S. Sumski, J. Vac. Sei. Technol. B3, 657 (1985).Google Scholar
  84. 84.
    Z.I. Alferov, V.M. Andreev, V.I. Korolkov, D.N. Tretyakov, and V.M. Tuchkevich, Sov. Phys. Semicond. 1, 1313 (1968).Google Scholar
  85. 85.
    R. Dingle, W. Wiegmann, and C.H. Henry, Phys. Rev. Lett. 33, 827 (1974).Google Scholar
  86. 86.
    J.P. van der Ziel, R. Dingle, R.C. Miller, W. Wiegmann, and WA. Nordland, Jr., Appl. Phys. Lett. 26, 463 (1975).Google Scholar
  87. 87.
    R.D. Dupuis, P.D. Dapkus, N. Holonyak, Jr., E.A. Rezek, and R. Chin, Appl. Phys. Lett. 32, 295 (1978).Google Scholar
  88. 88.
    WW Chow, K.D. Choquette, M.H. Crawford, K.L. Lear, and G.R. Hadley, IEEE J. Quantum Electron. 33, 1810 (1997).Google Scholar
  89. 89.
    E. Towe, R.F. Leheny, and A. Yang, IEEE J. Select. Topics Quantum Electron. 6, 1458 (2000).Google Scholar
  90. 90.
    R.S. Geels, S.W. Corzine, J.W Scott, D.B. Young, and L.A. Coldren, IEEE Photon. Tech. Lett. 2, 234 (1990).Google Scholar
  91. 91.
    R.S. Geels and L.A. Coldren, Appl. Phys. Lett. 57, 1605 (1990).Google Scholar
  92. 92.
    A.F.J. Levi, R.E. Slusher, S.L. McCall, T. Tanbun-Ek, D.L. Coblentz, and S.J. Pearton, Electron. Lett. 28, 1010 (1992).Google Scholar
  93. 93.
    A.F.J. Levi, R.E. Slusher, S.L. McCall, S.J. Pearton, and W.S. Hobson, Appl. Phys. Lett. 62, 2021 (1993).Google Scholar
  94. 94.
    R.E. Slusher, A.F.J. Levi, U. Mohideen, S.L. McCall, S.J. Pearton, and R.A. Logan, Appl. Phys. Lett. 63, 1310 (1993).Google Scholar
  95. 95.
    T. Baba, M. Fujita, A. Sakai, M. Kihara, and R. Watanabe, IEEE Photon. Tech. Lett. 9, 878 (1997).Google Scholar
  96. 96.
    T. Baba, IEEE J. Select. Topics Quantum Electron. 3, 808 (1997).Google Scholar
  97. 97.
    J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, and A.Y. Cho, Science 264, 553 (1994).Google Scholar
  98. 98.
    G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A.Y. Cho, Science 276, 773 (1997).Google Scholar
  99. 99.
    R. Kazarinov and R.A. Suris, Sov. Phys. Semicond. 5, 707 (1971).Google Scholar
  100. 100.
    F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D.L. Sivco, J.N. Bail-largeon, A.Y. Cho, and H.C. Liu, IEEE J. Select. Topics Quantum Electron. 6, 931 (2000).Google Scholar
  101. 101.
    F. Capasso, A. Tredicucci, C. Gmachl, D.L. Sivco, A.L. Hutchinson, A.Y. Cho, and G. Scamarcio, IEEE J. Select. Topics Quantum Electron. 5, 792 (1999).Google Scholar
  102. 102.
    E. Kapon, D.M. Hwang, and R. Bhat, Phys. Rev. Lett. 63, 430 (1989).Google Scholar
  103. 103.
    K. Kash, A. Scherer, I.M. Worlock, H.G. Craighead, and M.C. Tamargo, Appl. Phys. Lett. 49, 1043 (1986).Google Scholar
  104. 104.
    D. Gershoni, H. Temkin, C.J. Dolan, J. Dunsmuir, S.N.G. Chu, and M.B. Panish, Appl. Phys. Lett. 53, 995 (1988).Google Scholar
  105. 105.
    B.E. Maile, A. Forchel, R. Germann, D. Grützmacher, H.P. Meier, and J. P. Reithmaier, J. Vac. Sei. Technol. B7, 2030 (1989).Google Scholar
  106. 106.
    M. Kohl, D. Heitmann, P. Grambow, and K. Ploog, Phys. Rev. Lett. 63, 2124 (1989).Google Scholar
  107. 107.
    E. M. Clausen, Jr., J.P. Harbison, L.T. Florez, and B.P. Van der Gaag, J. Vac. Sei. Technol. B8, 1960 (1990).Google Scholar
  108. 108.
    A. Izrael, B. Sermage, J.Y Marzin, A. Ougazzaden, R. Azoulay, J. Etrillard, V. Thierry-Mieg, and L. Henry, Appl. Phys. Lett. 56, 830 (1990).Google Scholar
  109. 109.
    M. Notomi, M. Naganuma, T. Nishida, T. Tamamura, H. Iwamura, S. Nojima, and M. Okamoto, Appl. Phys. Lett. 58, 720 (1991).Google Scholar
  110. 110.
    N. Nunoya, M. Nakamura, H. Yasumoto, S. Tamura, and S. Arai, Jpn. J. Appl. Phys. 38, L1323, (1999).Google Scholar
  111. 111.
    N. Nunoya, M. Nakamura, H. Yasumoto, S. Tamura, and S. Arai, Jpn. J. Appl. Phys. 39 3410, (2000).Google Scholar
  112. 112.
    H. Yagi, K. Muranushi, N. Nunoya, T. Sano, S. Tamura, and S. Arai, Appl Phys. Lett. 81, 966 (2002).Google Scholar
  113. 113.
    P. Ils, M. Michel, A. Forchel, I. Gyuro, M. Klenk, and E. Zielinski, Appl. Phys. Lett. 64, 496 (1994).Google Scholar
  114. 114.
    J. Cibert, P.M. Petroff, G.J. Dolan, S.J. Pearton, A.C. Gossard, and J.H. English, Appl. Phys. Lett. 49, 1275 (1986).Google Scholar
  115. 115.
    H.A. Zarem, P.C. Sercel, M.E. Hoenk, J.A. Lebens, and K.J. Vahala, Appl. Phys. Lett. 54, 2692 (1989).Google Scholar
  116. 116.
    K.C. Hsieh, J.N. Baillargeon, and K.Y. Cheng, Appl. Phys. Lett. 57, 2244 (1990).Google Scholar
  117. 117.
    K.Y. Cheng, K.C. Hsieh, and J.N. Baillargeon, Appl. Phys. Lett. 60, 2892 (1992).Google Scholar
  118. 118.
    S.T. Chou, K.C. Hsieh, K.Y. Cheng, and L.J. Chou, J. Vac. Sei. Technol. B13, 650 (1995).Google Scholar
  119. 119.
    S.T. Chou, K.Y. Cheng, L.J. Chou, and K.C. Hsieh, Appl. Phys. Lett. 17, 2220 (1995).Google Scholar
  120. 120.
    S.T. Chou, K.Y. Cheng, L.J. Chou, and K.C. Hsieh, J. Appl. Phys. 78, 6270 (1995).Google Scholar
  121. 121.
    S. Francoeur, M.C. Hanna, A.G. Norman, and A. Mascarenhas, Appl. Phys. Lett. 80, 243, (2002).Google Scholar
  122. 122.
    C.M. Fetzer, R.T. Lee, S.W. Jun, G.B. Stringfellow, S.M. Lee, and T.Y. Seong, Appl. Phys. Lett. 78, 1376 (2001).Google Scholar
  123. 123.
    R.D. Twesten, D.M. Follstaedt, S.R. Lee, E.D. Jones, J.L. Reno, J.M. Millunchick, A.G. Norman, S.P Ahrenkiel, and A. Mascarenhas, Phys. Rev. B60, 13,619 (1999).Google Scholar
  124. 124.
    V.M. Petroff, A.C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 45, 620 (1984).Google Scholar
  125. 125.
    J.M. Gaines, P.M. Petroff, H. Kroemer, R.I. Simes, R.J. Geels and J.H. English, J. Vac. Sei. Technol. B6, 1378 (1988).Google Scholar
  126. 126.
    T. Fukui and H. Saito, Jpn. J. Appl. Phys. 29, L731 (1990).Google Scholar
  127. 127.
    S. Hara, J. Ishizaki, J. Motohisa, T. Fukui, and H. Hasegawa, J. Cryst. Growth 145, 692 (1994).Google Scholar
  128. 128.
    M. Yamamoto, M. Higashiwaki, S. Shimomura, N. Sano, and S. Hiyamizu, Jpn. J. Appl. Phys. 36, 6285 (1997).Google Scholar
  129. 129.
    M. Higashiwaki, S. Ikawa, S. Shimomura, and S. Hiyamizu, J. Cryst. Growth 201, 886 (1999).Google Scholar
  130. 130.
    A. Chavez-Pirson, H. Ando, H. Saito, and H. Kanbe, Appl. Phys. Lett. 62, 3082 (1993).Google Scholar
  131. 131.
    H. Nakashima, T. Kato, K. Maehashi, T. Nishida, Y Inoue, T. Takeuchi, K. Inoue, P. Fischer, J. Christen, M. Grundmann, and D. Bimberg, Mater. Sei. Eng. B51, 229 (1998).Google Scholar
  132. 132.
    E. Kapon, M.C. Tamargo, and D.M. Hwang, Appl. Phys. Lett. 50, 347 (1987).Google Scholar
  133. 133.
    R. Bhat, E. Kapon, D.M. Hwang, M.A. Koza, and C.P. Yun, J. Cryst. Growth 93, 850 (1988).Google Scholar
  134. 134.
    E. Kapon, K. Kash, E.M. Clausen, Jr., D.M. Hwang, and E. Colas, Appl. Phys. Lett. 60,477 (1992).Google Scholar
  135. 135.
    C. Percival, P.A. Houston, J. Woodhead, M. Al-Khafaji, G. Hill, J.S. Roberts, and A.P. Knights, IEEE Trans. Electron. Dev. 47, 1769 (2000).Google Scholar
  136. 136.
    S. Simhony, E. Kapon, T. Colas, D.M. Hwang, N.G. Stoffel, and P. Worland, Appl. Phys. Lett. 59, 2225 (1991).Google Scholar
  137. 137.
    T.G. Kim, K. Park, E.K. Kim, S. Min, and J. Park, IEEE Photon. Tech. Lett. 9, 2 (1997).Google Scholar
  138. 138.
    T.G. Kim, Y. Suzuki, M. Shimiz, and M. Ogura, Solid State Electron. 43, 2093 (1999).Google Scholar
  139. 139.
    T.G. Kim, X.-L. Wang, K. Komori, K. Hikosaka, and M. Ogura, Electron. Lett. 35, 639 (1999).Google Scholar
  140. 140.
    T.G. Kim, Y Suzuki, and M. Ogura, IEEE Photon. Tech. Lett. 12, 104 (2000).Google Scholar
  141. 141.
    T.G. Kim, X.-L. Wang, Y Suzuki, K. Komori, and M. Ogura, IEEE J. Select. Topics Quantum Electron. 6, 511 (2000).Google Scholar
  142. 142.
    S. Koshiba, H. Noge, H. Akiyama, T. Inoshita, Y Nakamura, A. Shimizu, Y Nagamune, M. Tsuchiya, H. Kano, and H. Sakaki, Appl. Phys. Lett. 64, 363 (1994).Google Scholar
  143. 143.
    H. Akiyama, S. Koshiba, T. Someya, K. Wada, H. Noge, Y. Nakamura, T. Inoshita, A. Shimizu, and H. Sakaki, Phys. Rev. Lett. 72, 924 (1994).Google Scholar
  144. 144.
    C. Jiang, T. Muranaka, and H. Hasegawa, Japan. J. Appl. Phys. 40, 3003 (2001).Google Scholar
  145. 145.
    C. Jiang and H. Hasegawa, Jpn. J. Appl. Phys. 41, 972 (2002).Google Scholar
  146. 146.
    Y.C. Chang, L.L. Chang, and L. Esaki, Appl. Phys. Lett. 47, 1324 (1985).Google Scholar
  147. 147.
    H. Akiyama, J. Phys. Condens. Mat. 10, 3095 (1998).Google Scholar
  148. 148.
    L.N. Pfeiffer, K.W. West, H. L. Störmer, J. P. Eisenstein, K.W. Baldwin, D. Gershoni, and J. Spector, Appl. Phys. Lett. 56, 1697 (1990).Google Scholar
  149. 149.
    L.N. Pfeiffer, H.L. Störmer, K.W. Baldwin, K.W. West, A.R. Goñi, A. Pinczuk, R.C. Ashoori, M.M. Dignam, and W Wegscheider, J. Cryst. Growth 127, 849 (1993).Google Scholar
  150. 150.
    D. Gershoni, J.S. Weiner, S.N.G. Chu, G.A. Baraff, J.M. Vandenberg, L. N. Pfeiffer, K.W. West, R.A. Logan, and T. Tanbun-Ek, Phys. Rev. Lett. 65, 1631 (1990).Google Scholar
  151. 151.
    A.R. Goñi, L.N. Pfeiffer, K.W. West, A. Pinczuk, H.U. Baranger, and H.L. Störmer, Appl. Phys. Lett. 61, 1956 (1992).Google Scholar
  152. 152.
    T. Someya, H. Akiyama, and H. Sakaki, J. Appl. Phys. 79, 2522 (1996).Google Scholar
  153. 153.
    W Wegscheider, L.N. Pfeiffer, M.M. Dignam, A. Pinczuk, K.W. West, S.L. McCall, and R. Hull, Phys. Rev. Lett. 71, 4071 (1993).Google Scholar
  154. 154.
    W Wegscheider, L.N. Pfeiffer, K.W. West, and R.E. Leibenguth, Appl. Phys. Lett. 65, 2510 (1994).Google Scholar
  155. 155.
    R.S. Wagner and WC. Ellis, Appl. Phys. Lett. 4, 89 (1964).Google Scholar
  156. 156.
    K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi, J. Appl. Phys. 77, 447 (1995).Google Scholar
  157. 157.
    P. Yang, Y. Wu, and R. Fan, Int. J. Nanosci. 1, 1 (2002).Google Scholar
  158. 158.
    J. Hu, T.W. Odom, and C.M. Lieber, Acc. Chem. Res. 32, 435 (1999).Google Scholar
  159. 159.
    Y. Wu and P. Yang, Chem. Mater. 12, 605 (2000).Google Scholar
  160. 160.
    A.M. Morales and CM. Lieber, Science 279, 208 (1998).Google Scholar
  161. 161.
    X.F. Duan, J.F. Wang, and CM. Lieber, Appl. Phys. Lett. 76, 1116 (2000).Google Scholar
  162. 162.
    Y Zhang, R. Russo, and S.S. Mao, Appl. Phys. Lett., 87, 133115 (2005).Google Scholar
  163. 163.
    T.J. Trentler, K.M. Hickman, S.C. Geol, A.M. Viano, PC. Gibbons, and WE. Buhro, Science 270, 1791 (1995).Google Scholar
  164. 164.
    CR. Martin, Science 266, 1961 (1994).Google Scholar
  165. 165.
    E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, Nature 391, 775 (1998).Google Scholar
  166. 166.
    L. Vayssieres, Int. J. Nanotech. 1, 1 (2004).Google Scholar
  167. 167.
    Y. Xia, Int. J. Nanotech. 1, 86 (2004).Google Scholar
  168. 168.
    M. Cao, Y. Miyake, S. Tamura, H. Hirayama, S. Arai, Y. Suematsu, and Y Miyamoto, Trans. IEICE E73, 63 (1990).Google Scholar
  169. 169.
    M. Cao, P. Daste, M. Miyamoto, Y Miyake, S. Nogiwa, S. Arai, K. Furuya, and Y Suematsu, Electron. Lett. 24, 824 (1988).Google Scholar
  170. 170.
    T. Kojima, M. Tamura, H. Nakaya, S. Tanaka, S. Tamura, and S. Arai, Jpn. J. Appl. Phys. 37, 4792 (1998).Google Scholar
  171. 171.
    H. Yagi, K. Muranushi, N. Nunoya, T. Sano, S. Tamura, and S. Arai, Jpn. J. Appl. Phys. 41, L186 (2002).Google Scholar
  172. 172.
    N. Nunoya, H. Yasumoto, H. Midorikawa, S. Tamura, and S. Arai, Jpn. J. Appl. Phys. 39, L1042 (2000).Google Scholar
  173. 173.
    N. Nunoya, M. Nakamura, M. Morshed, S. Tamura, and S. Arai, IEEE J. Select. Topics Quantum Electron. 7, 249 (2001).Google Scholar
  174. 174.
    M. Nakamura, N. Nunoya, H. Yasumoto, M. Morshed, K. Fukuda, S. Tamura, and S. Arai, Electron. Lett. 36, 639 (2000).Google Scholar
  175. 175.
    J. Yoshida and K. Kishino, IEEE Photon. Tech. Lett. 7, 241 (1995).Google Scholar
  176. 176.
    S.T. Chou, D.E. Wohlert, K.Y Cheng, and K.C. Hsieh, J. Appl. Phys. 83, 3469 (1998).Google Scholar
  177. 177.
    D.E. Wohlert, K.Y. Cheng, and S.T. Chou, Appl. Phys. Lett. 78, 1047 (2001).Google Scholar
  178. 178.
    S. Hara, J. Motohisa, and T. Fukui, Solid State Electron. 42, 1233 (1998).Google Scholar
  179. 179.
    M. Tsuchiya, P.M. Petroff, and L.A. Coldren, IEEE Trans. Electron. Dev. 36, 2612 (1989).Google Scholar
  180. 180.
    S.Y. Hu, M.S. Miller, D.B. Young, J.C. Yi, D. Leonard, A.C. Gossard, P.M. Petroff, L.A. Coldren, and N. Dagli, Appl. Phys. Lett. 63, 2015 (1993).Google Scholar
  181. 181.
    S.Y. Hu, J.C. Yi, M.S. Miller, D. Leonard, D.B. Young, A.C. Gossard, N. Dagli, P.M. Petroff, and L.A. Coldren, IEEE J. Quantum Electron. 31, 1380 (1995).Google Scholar
  182. 182.
    H. Saito, K. Uwai, and N. Kobayashi, Jpn. J. Appl. Phys. 32, 4440 (1993).Google Scholar
  183. 183.
    S. Hara, J. Motohisa, and T. Fukui, Electron. Lett. 34, 894 (1998).Google Scholar
  184. 184.
    A. Chavez-Pirson, H. Ando, H. Saito, and H. Kanbe, Appl. Phys. Lett. 64, 1759 (1994).Google Scholar
  185. 185.
    Y Ohno, H. Kanamori, S. Shimomura, and S. Hiyamizu, Physica E13, 892 (2002).Google Scholar
  186. 186.
    E. Kapon, S. Simhony, R. Bhat, and D.M. Hwang, Appl. Phys. Lett. 55, 2715 (1989).Google Scholar
  187. 187.
    S. Tiwari, G.D. Pettit, K.R. Milkove, F. Legoues, R.J. Davis, and J.M. Woodall, Appl. Phys. Lett. 64, 3536 (1994).Google Scholar
  188. 188.
    Y Qian, Z.T. Xu, J.M. Zhang, L.H. Chen, Q.M. Wang, L.X. Zheng, and X.W. Hu, Electron. Lett. 3, 102 (1995).Google Scholar
  189. 189.
    D. Piester, P. Bönsch, T. Schrimpf, H.-H. Wehmann, and A. Schlachetzki, IEEE J. Select. Topics Quantum Electron. 6, 522 (2000).Google Scholar
  190. 190.
    T.G. Kim, C.S. Son, and M. Ogura, IEEE Photon. Tech. Lett. 13, 409 (2001).Google Scholar
  191. 191.
    L. Sirigu, D.Y Oberli, L. Degiorgi, A. Rudra, and E. Kapon, Phys. Rev. B61, R10575 (2000).Google Scholar
  192. 192.
    T.G. Kim, X.-L. Wang, R. Kaji, and M. Ogura, Physica E7, 508 (2000).Google Scholar
  193. 193.
    S. Watanabe, S. Koshiba, M. Yoshita, H. Sakaki, M. Baba, and H. Akiyama, Appl. Phys. Lett. 73, 511 (1998).Google Scholar
  194. 194.
    S. Watanabe, S. Koshiba, M. Yoshita, H. Sakaki, M. Baba, and H. Akiyama, Appl. Phys. Lett., 75, 2190 (1999).Google Scholar
  195. 195.
    L. Sorba, G. Schedelbeck, W. Wegscheider, M. Bichler, and G. Abstreiter, Phys. Status Solidi A178, 227 (2000).Google Scholar
  196. 196.
    Y Hayamizu, M. Yoshita, S. Watanabe, H. Akiyama, L. N. Pfeiffer, and K. W West, Appl. Phys. Lett. 81, 4937 (2002).Google Scholar
  197. 197.
    P. Fons, K. Iwata, A. Yamada, K. Matsubara, S. Niki, K. Nakahara, T. Tanabe, and H. Takasu, Appl. Phys. Lett. 77, 1801 (2000).Google Scholar
  198. 198.
    D.M. Bagnall, YF. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1997).Google Scholar
  199. 199.
    P. Yu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y Segawa, J. Cryst. Growth 184, 601 (1998).Google Scholar
  200. 200.
    H. Cao, J.Y Xu, D.Z. Zhang, S.H. Chang, S.T. Ho, E.W. Seelig, X. Liu, and R.P.H. Chang, Phys. Rev. Lett. 84, 5584 (2000).Google Scholar
  201. 201.
    P. Yang, H. Yan, S.S. Mao, R.E. Russo, J.C. Johnson, R.J. Saykally, N. Morris, J. Pham, R. He, and H.J. Choi, Adv. Fund. Mater. 12, 323 (2002).Google Scholar
  202. 202.
    J.C. Johnson, H. Yan, R.D. Schaller, L.H. Haber, R.J. Saykally, and P. Yang, J. Phys. Chem. B105, 11,387 (2001).Google Scholar
  203. 203.
    J.C. Johnson, H.J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang, and R.J. Saykally, Nat. Mater. 1, 106 (2002).Google Scholar
  204. 204.
    X. Duan, Y. Huang, R. Agarwal, and C.M. Lieber, Nature 421, 241 (2003).Google Scholar
  205. 205.
    V.M. Ustinov, A.E. Zhukov, A.Y Egorov, N.A. Maleev, Quantum Dot Lasers, Oxford University Press, New York, 2003.Google Scholar
  206. 206.
    P. Michler, A. Imamoglu, M.D. Mason, P.J. Carson, G.F. Strouse, and S.K. Buratto, Nature 406, 968 (2000).Google Scholar
  207. 207.
    P. Michler, A. Kiraz, C. Becher, WV. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, Science 290, 2282 (2000).Google Scholar
  208. 208.
    C. Santori, M. Pelton, G. Solomon, Y Dale, and Y Yamamoto, Phys. Rev. Lett. 86, 1502 (2001).Google Scholar
  209. 209.
    D. Bimberg, M. Grundmann, and N.N. Ledentsov, Quantum Dot Heterostructures, Wiley, New York, 1999.Google Scholar
  210. 210.
    H.W. Lehmann, J. Vac. Sci. Technol B6, 1881 (1988).Google Scholar
  211. 211.
    P. Grambow, T. Demel, D. Heitmann, M. Kohl, R. Schule, and K. Ploog, Micro electron. Eng. 9, 357 (1989).Google Scholar
  212. 212.
    M.A. Reed, J.N. Randall, R.J. Aggarwal, R.J. Matyi, T.M. Moore, and A.E. Wetsel, Phys. Rev. Lett. 60, 535 (1988).Google Scholar
  213. 213.
    R. Cheung, Y.H. Lee, C.M. Knowdler, K.Y. Lee, T.P. Smith, and D.R Kern, Appl. Phys. Lett. 54, 2130 (1989).Google Scholar
  214. 214.
    G. Mayer, B.E. Maile, R. Gernann, A. Forchel, P. Crambow, and H.P. Meier, Appl. Phys. Lett., 56, 2016 (1990).Google Scholar
  215. 215.
    M. Tabuchi, S. Noda, and A. Sasaki, in Science and Technology of Mesoscopic Structures edited by S. Namba, C. Hamaguchi, and T. Ando, Springer-Verlag, Tokyo, 1992.Google Scholar
  216. 216.
    V.A. Shchukin, N.N. Ledenstov, P.S. Kop’ev, and D. Bimberg. Phys. Rev. Lett. 75, 2968 (1995).Google Scholar
  217. 217.
    E. Bauer and H. Poppa, Thin Solid Films 12, 167 (1972).Google Scholar
  218. 218.
    D.J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
  219. 219.
    D. Leonard, M. Krishnamurthy, C.M. Reaves, S.P. DenBaars, and P.M Petroff, Appl. Phys. Lett. 63, 3203 (1993).Google Scholar
  220. 220.
    J.M. Moison, F. Housay, F. Barthe, L. Leprince, E. Andre, and O. Vatel, Appl. Phys. Lett. 64, 196 (1994).Google Scholar
  221. 221.
    D. Leonard, K. Pond, and P.M. Petroff, Phys. Rev. B50, 11687 (1994).Google Scholar
  222. 222.
    H. Drexler, D. Leonard, W. Hansen, J.P. Kotthaus, and P.M. Petroff, Phys. Rev. Lett. 73, 2252 (1994).Google Scholar
  223. 223.
    G. Medeiros-Ribeiro, D. Leonard, and P.M. Petroff, Appl. Phys. Lett. 66, 1767 (1995).Google Scholar
  224. 224.
    M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B62, 1969 (1995).Google Scholar
  225. 225.
    R. Heitz, M. Grundmann, N.N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, V.M. Ustinov, A. Yu. Egorov, A.E. Zhukov, P.S. Kop’ev, and Z.I. Alferov, Appl. Phys. Lett. 68, 361 (1996).Google Scholar
  226. 226.
    M. Grundmann, N.N. Ledentsov, O. Stier, J. Bohrer, D. Bimberg, V.M. Ustinov, P.S. Kop’ev, and Z.I. Alferov, Phys. Rev. B53, R10,509 (1996).Google Scholar
  227. 227.
    M.A. Cusack, P.R. Briddon, and M. Jaros, Phys. Rev. B54, R2300 (1996).Google Scholar
  228. 228.
    G. Medeiros-Ribeiro, F.G. Pikus, P.M. Petroff, and A.L. Efros, Phys. Rev. B55, 1568 (1997).Google Scholar
  229. 229.
    G. Walter, N. Holonyak, Jr., J.H. Ryou, and R.D. Dupuis, Appl. Phys. Lett. 79, 3215 (2001).Google Scholar
  230. 230.
    M. Klude, T. Passow, R. Kroger, and D. Hommel, Electron. Lett. 37, 1119 (2001).Google Scholar
  231. 231.
    B. Daudin, F. Widmann, G. Feuillet, Y. Samson, M. Arlery, and J. L. Rouviere, Phys. Rev. B56, R7069 (1997).Google Scholar
  232. 232.
    C.B. Murray, C.R. Kagan, and M.G. Bawendi, Annu. Rev. Mater. Sci. 30, 545 (2000).Google Scholar
  233. 233.
    H. Reiss, J. Chem. Phys. 19, 482 (1951).Google Scholar
  234. 234.
    C.B. Murray, D.J. Norris, and M.G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).Google Scholar
  235. 235.
    X. Peng, J. Wickham, and A.P. Alivisatos, J. Am. Chem. Soc. 120, 5343 (1998).Google Scholar
  236. 236.
    D.V. Talapin, E.V. Shevchenko, A. Kornowski, N. Gaponik, M. Haase, A.L. Rogach, and H. Weller. Adv. Mater. 13, 1868 (2001).Google Scholar
  237. 237.
    O.I. Micic, C.J. Curtis, K.M. Jones, J.R. Sprague, and A.J. Nozik, J. Phys. Chem. 98, 4966 (1994).Google Scholar
  238. 238.
    A.A. Guzelian, J.E.B. Katari, A.V. Kadavanich, U. Banin, K. Hamad, E. Juban, A.P. Alivisatos, R.H. Wolters, C.C. Arnold, and J.R. Heath, J. Phys. Chem. 100, 7212 (1996).Google Scholar
  239. 239.
    O.I. Micic, H.F. Cheong, A. Zunger, J.R. Sprague, A. Mascarenhas, and A.J. Nozik, J. Phys. Chem. B101, 4904 (1997).Google Scholar
  240. 240.
    O.I. Micic, J.R. Sprague, C.J. Curtis, K.M. Jones, J.L. Machol, A.J. Nozik, H. Giessen, B. Fluegel, G. Mohs, and N. Peyghambarian, J. Phys. Chem. 99, 7754 (1995).Google Scholar
  241. 241.
    A.A. Guzelian, U. Banin, A.V. Kadavanich, X. Peng, and A.P. Alivisatos, Appl. Phys. Lett. 69, 1432 (1996).Google Scholar
  242. 242.
    U. Banin, CJ. Lee, A.A. Guzelian, A.V. Kadavanich, A.P. Alivisatos, W. Jakolski, G.W. Bryant, A.L. Efros, and M. Rosen, J. Chem. Phys. 109, 2306 (1998).Google Scholar
  243. 243.
    R.L. Wells, C.G. Pitt, A.T. McPhail, A.P. Purdy, S. Schafieezad, and R. B. Hallock, Chem. Mater. 1, 4 (1989).Google Scholar
  244. 244.
    M.L. Steigerwald, A.P. Alivisatos, J.M. Gibson, T.D. Harris, R. Kortan, A.J. Muller, A.M. Thayer, T.M. Duncan, L.E. Douglass, and L.E. Brus, J. Am. Chem. Soc. 110, 3046 (1990).Google Scholar
  245. 245.
    A.R. Kortan, R. Hull, R.L. Oplia, M.G. Bawendi, M.L. Steigerwald, P.J. Carroll, and L.E. Brus, J. Am. Chem. Soc. 112, 1322 (1990).Google Scholar
  246. 246.
    Y. Golan, L. Margulis, I. Rubinstein, and G. Hodes, Langmuir 8, 749 (1992).Google Scholar
  247. 247.
    B. Alperson, S. Cohen, I. Rubinstein, and G. Hodes, Phys. Rev. B52, 17,017 (1995).Google Scholar
  248. 248.
    H. Hirayama, K. Matsunaga, M. Asada, and Y. Suematsu, Electron. Lett. 30, 142 (1994).Google Scholar
  249. 249.
    N. Kirstaedter, N.N. Ledentsov, M. Grundmann, D. Bimberg, V.M. Ustinov, S.S. Ruvimov, M.V. Maximov, P.S. Kop’ev, Z.I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, Electron. Lett. 30, 1416 (1994).Google Scholar
  250. 250.
    N.N. Ledentsov, V.M. Ustinov, A. Yu. Egorov, A.E. Zhukov, M.V. Maximov, I.G. Tabatadze, and P.S. Kop’ev, Semiconductors 28, 832 (1994).Google Scholar
  251. 251.
    N.N. Ledentsov, M. Grundmann, F. Heinrichsdorff, D. Bimberg, V.M. Ustinov, A.E. Zhukov, M.V. Maximov, Z.I. Alferov, and J.A. Lott, IEEE J. Select. Topics Quantum Electron. 6, 439 (2000).Google Scholar
  252. 252.
    M.V. Maximov, I.V. Kochnev, Yu.M. Shernyakov, S.V. Zaitsev, N.Yu. Gordeev, A.F. Tsatsul’nikov, A.V. Sakharov, I.L. Krestnikov, P.S. Kop’ev, Z.I. Alferov, N.N. Ledentsov, D. Bimberg, A.O. Kosogov, P. Werner, and U. Gösele, Jpn. J. Appl. Phys. 36, 4221 (1997).Google Scholar
  253. 253.
    N.N. Ledentsov, V.A. Shchukin, M. Grundmann, N. Kirstaedter, J. Böhrer, O. Schmidt, D. Bimberg, S.V. Zaitsev, V.M. Ustinov, A.E. Zhukov, P.S. Kop’ev, Z.I. Alferov, A.O. Kosogov, S.S. Ruvimov, P. Werner, U. Gösele, and J. Heydenreich, Phys. Rev. B54, 8743 (1996).Google Scholar
  254. 254.
    C. Ribbat, R. Sellin, M. Grundmann, and D. Bimberg, Phys. Status Solidi B224, 819 (2001).Google Scholar
  255. 255.
    G.T. Liu, A. Stintz, H. Li, T.C. Newell, A.L. Gray, P.M. Varangis, K.J. Malloy, and L.F. Lester, IEEEJ. Quantum Electron. 36, 1272 (2000).Google Scholar
  256. 256.
    R.L. Sellin, Ch. Ribbat, M. Grundmann, N.N. Ledentsov, and D. Bimberg, Appl. Phys. Lett. 78, 1207 (2001).Google Scholar
  257. 257.
    D.L. Huffaker, O. Baklenov, L.A. Graham, B.G. Streetman, and D.G. Deppe, Appl. Phys. Lett. 70, 2356 (1997).Google Scholar
  258. 258.
    J.A. Lott, N.N. Ledentsov, V.M. Ustinov, A.Y. Egorov, A.E. Zhukov, P.S. Kop’ev, Z.I. Alferov, and D. Bimberg, Electron. Lett. 33, 1150 (1997).Google Scholar
  259. 259.
    M. Arzberger, G. Bohm, M.-C. Amann, and G. Abstreiter, Appl Phys. Lett. 79, 1766 (2001).Google Scholar
  260. 260.
    D.K. Young, L. Zhang, D.D. Awschalom, and E.L. Hu, Phys. Rev. B66 081307 (2002).Google Scholar
  261. 261.
    T. Yoshie, O.B. Shchekin, H. Chen, D.G. Deppe, and A. Scherer, Electron. Lett. 38, 967 (2002).Google Scholar
  262. 262.
    K. Tachibana, Someya, Y. Arakawa, R. Werner, and A. Forchel, Appl. Phys. Lett. 75, 2605 (1999).Google Scholar
  263. 263.
    V.I. Klimov, A.A. Mikhailovsky, S. Xu, A. Malko, J.A. Hollingsworth, C.A. Leatherdale, H.-J. Eisler, and M.G. Bawendi, Science 290, 314 (2000).Google Scholar
  264. 264.
    M. Farhoud, J. Fererra, A.J. Lochtefeld, T.E. Murphy, M.L. Schattenburg, J. Carter, C.A. Ross, and H.I. Smith, J. Vac. Sci. Technol. B17, 3182 (1999).Google Scholar
  265. 265.
    T. Ogawa and T. Takagahara, Phys. Rev. B44, 8138 (1991).Google Scholar
  266. 266.
    S. Nojima, Phys. Rev. B50, 2306 (1994).Google Scholar
  267. 267.
    M. Grundmann and D. Bimberg, Phys. Rev. B55, 4054 (1997).Google Scholar
  268. 268.
    F. Rossi, G. Goldoni, and E. Molinari, Phys. Rev. Lett. 78, 3527 (1997).Google Scholar
  269. 269.
    S.D. Sarma and D.W. Wang, Phys. Rev. Lett. 84, 2010 (2000).Google Scholar
  270. 270.
    A. Kuther, M. Bayer, T. Gutbrod, A. Forchel, P.A. Knipp, T.L. Reinecke, and R. Werner, Phys. Rev. B58, 15744 (1998).Google Scholar
  271. 271.
    C. Constantin, E. Martinet, D.Y. Oberli, E. Kapon, B. Gayral, and J.-M. Gerard, Phys. Rev. B66, 165306 (2002).Google Scholar
  272. 272.
    J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, Phys. Rev. A66, 23,808 (2002).Google Scholar
  273. 273.
    Y. Yamamoto, F. Tassone, and H. Cao, Semiconductor Cavity Quantum Electrodynamics, Springer-Verlag, Berlin, 2000.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Samuel S. Mao
    • 1
  1. 1.Lawrence Berkeley National Laboratory and Department of Mechanical EngineeringUniversity of CaliforniaBerkeley

Personalised recommendations