Structural Immunoinformatics

  • Shoba Ranganathan
  • Joo Chuan Tong
  • Tin Wee Tan


Normal adaptive immune responses operate under major histocompatibility complex (MHC) restriction by binding to specific short antigenic peptides. Sequence-structure-function information is critical in facilitating the understanding of principles governing MHC-specific peptide recognition and binding. Three-dimensional structures of bound peptide ligands to MHC receptors are today characterized in great number using X-ray crystallography, offering a rich source of information for structural analysis. By utilizing information derived from available experimental structures, it is possible to predict binders for alleles that have not been studied extensively and offers an alternative to sequence-based approaches that require a large dataset for training. This chapter will introduce the use of structural descriptors, as well as comparative modeling and docking techniques for predicting whether a peptide sequence can bind to a specific MHC allele.


Major Histocompatibility Complex Major Histocompatibility Complex Class Docking Simulation Major Histocompatibility Complex Molecule Binding Groove 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abagyan, R., and Maxim, T. (1999) Ab initio folding of peptides by the optimal-bias Monte Carlo minimization procedure. J. Comput. Phys. 151:402-421.CrossRefGoogle Scholar
  2. Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer, E.E., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T., and Tasumi, M. (1977) The Protein Data Bank: A computer-based archival file for macromolecular structures. J. Mol. Biol. 112:535-542.PubMedCrossRefGoogle Scholar
  3. Chothia, C., and Janin, J. (1975) Principles of protein-protein recognition. Nature 28:705-708.CrossRefGoogle Scholar
  4. Fernández-Recio, J., Totrov, M., and Abagyan, R. (2002) Soft protein-protein docking in internal coordinates. Protein Sci. 11:280-291.PubMedCrossRefGoogle Scholar
  5. Fischer, K.F., and Marquesee, S. (2000) A rapid test for identification of autonomous folding units in proteins. J. Mol. Biol. 302:701-712.PubMedCrossRefGoogle Scholar
  6. Jones, S., and Thornton, J.M. (1996) Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 93:13-20.PubMedCrossRefGoogle Scholar
  7. Kangueane, P., Sakharkar, M.K., Kolatkar, P.R., and Ren, E.C. (2001) Towards the MHC-peptide combinatorics. Hum. Immunol. 62:539-556.PubMedCrossRefGoogle Scholar
  8. Laskowski, R.A. (1991) SURFNET computer program (Department of Biochemistry and Molecular Biology, University College, London, England).Google Scholar
  9. Morrison, R.T., and Boyd, R.N. (1992) Organic Chemistry, Sixth Edition. Prentice -Hall.Google Scholar
  10. Needleman, S.B., and Wunsch, C.D. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48:443-453.PubMedCrossRefGoogle Scholar
  11. Rost, B., and Sander, C. (1994) Conservation and prediction of solvent accessibility in protein families. Proteins 20:216-226.PubMedCrossRefGoogle Scholar
  12. Sali, A., and Blundell, T.L. (1993) Comparative protein modeling by satisfaction of spatial restraints. J. Mol. Biol. 234:774-815.CrossRefGoogle Scholar
  13. Samanta, U., Bahadur, R.P., and Chakrabarti, P. (2002) Quantifying the accessible surface area of protein residues in their local environment. Protein Eng. 15:659-667.PubMedCrossRefGoogle Scholar
  14. Samudrala, R., and Moult, J. (1997) Handling context-sensitivity in protein structures using graph theory: Bona fide prediction. Proteins Suppl. 1:43-49.CrossRefGoogle Scholar
  15. Sanchez, R., and Sali, S. (1997) Evaluation of comparative protein structure modeling by MODELLER-3. Proteins Suppl. 1:50-58.CrossRefGoogle Scholar
  16. Smith, T.F., and Waterman, M.S. (1981) Identification of common molecular subsequences. J. Mol. Biol. 147:195-197.PubMedCrossRefGoogle Scholar
  17. Swindells, M.B., and Thornton, J.M. (1991) Modelling by homology. Curr. Opin. Struct. Biol. 1:219-223.CrossRefGoogle Scholar
  18. Tong, J.C., Tan, T.W., and Ranganathan, S. (2004) Modeling the structure of bound peptide ligands to major histocompatibility complex. Protein Sci. 13:2523-2532.PubMedCrossRefGoogle Scholar
  19. Tong, J.C., Kong, L., Tan, T.W., and Ranganathan, S. (2006) MPID-T: Database for sequence-structure-function information on TCR/peptide/MHC interactions. Appl. Bioinformatics 5:111-114.PubMedCrossRefGoogle Scholar
  20. Tong, J.C., Bramson, J., Kanduc, D., Sinha, A.A.,and Ranganathan, S. (2006) Modeling the bound conformation of pemphigus vulgaris-associated peptides to MHC class II DR and DQ alleles. Immunome Res. 2:1.PubMedCrossRefGoogle Scholar
  21. Wallace, A.C., Laskowski, R.A., and Thornton, J.M. (1995) LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8:127-134.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Shoba Ranganathan
    • 1
    • 3
  • Joo Chuan Tong
    • 2
  • Tin Wee Tan
    • 3
  1. 1.Department of Chemistry and Biomolecular Sciences & Biotechnology Research InstituteMacquarie UniversitySydneyAustralia
  2. 2.Institute for Infocomm Research21 Heng Mui Keng TerraceSingapore 119613
  3. 3.Department of BiochemistryYong Loo Lin School of Medicine, National University of Singapore8 Medical DriveSingapore 117597

Personalised recommendations