Dynamic Cardiomyoplasty

  • Vinay Badhwar
  • David Francischelli
  • Ray C-J. Chiu
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 225)


Dynamic cardiomyoplasty (DCMP) is in the final stages of a clinical trial to evaluate it as a surgical alternative for the management of end-stage heart failure. This procedure is conceptually based upon imparting the contractile force of the patient’s own skeletal muscle to perform cardiac assistance. It is accomplished by wrapping the latissimus dorsi muscle (LDM) around the failing heart and, by means of an implantable cardiomyostimulator, stimulating the muscle to contract in synchrony with cardiac systole. DCMP has been proposed as an alternative and bridge to transplantation in selected patients. Compared with other surgical options in heart failure this approach has a number of advantages. Cardiomyoplasty obviates the donor organ dependency and immunosuppression of transplantation. This totally implantable form of biomechanical assist, also avoids the power constraints and thromboembolic risks experienced with mechanical assist devices. The LDM can be utilized with little or no loss of shoulder function, and the DCMP procedure itself costs significantly less than other surgical options for the treatment of heart failure.


Heart Failure Skeletal Muscle Implantable Cardioverter Defibrillator Latissimus Dorsi Muscle Implantable Cardioverter Defibrillator Implantation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DeJesus FR. Breves consideraciones sobre un caso do herida penetrante del coranda. Bol Assoc Med PR 1931,23:380Google Scholar
  2. 2.
    Leriche R, Fontaine R. Essai experimental de traitement de certains infarctus de myocarde et de l’aneurisme de coeur par un graffe de muscle strie. Bull Soc Natl Chir 1933;59:229.Google Scholar
  3. 3.
    Beck CS. The development of a new blood supply to the myocardium by operation. Ann Surg 1935;102:801.PubMedCrossRefGoogle Scholar
  4. 4.
    Griffith GC, Bates W. A ventricular perforation in transplanting a new blood supply. New Int Clin 1938;2:17.Google Scholar
  5. 5.
    Weinstein M, Shafiroff BG. Grafts of free muscle transplants upon the myocardium. Science 1946; 104:410.PubMedCrossRefGoogle Scholar
  6. 6.
    Kantrowitz A, McKinnon WMP. The experimental use of the diaphragm as an auxiliary myocardium Surg Forum 1959;9:266.Google Scholar
  7. 7.
    Buller AJ, Eccles JC, Eccles RM. Interactions between motoneurons and muscles in respect of the characteristic speeds of their responses. J Physiol 1960;150:417.PubMedGoogle Scholar
  8. 8.
    Von Recum A, Stule JP, Hamada O, et al. Long-term stimulation of a diaphragm muscle pouch. J Surg Res 1977;23:422.CrossRefGoogle Scholar
  9. 9.
    Drinkwater DC, Chiu RCJ, Modry D, et al. Cardiac assist and myocardial repair with synchronously stimulated skeletal muscle. Surg Forum 1980,31:271.Google Scholar
  10. 10.
    Macoviak JA, Stephenson LW, Armenti F, et al. Electrical conditioning of in situ skeletal muscle for replacement of myocardium. J Surg Res 1982;32:429.PubMedCrossRefGoogle Scholar
  11. 11.
    Chachques JC, Carpentier A, Chauvaud S. Development of a non-tiring stimulation of the latissimus dorsi flap to replace myocardium. Artif Organs 1984,8:379.Google Scholar
  12. 12.
    Chachques JC, Mitz V, Hero M. Experimental cardioplasty using the latissimus dorsi muscle flap. J Cardiovasc Surg 1985;26:457.Google Scholar
  13. 13.
    Carpentier A, Chachques JC. Myocardial substitution with a stimulated skeletal muscle: first successful clinical case. Lancet 1985;8440:1267.CrossRefGoogle Scholar
  14. 14.
    Magovem GJ, Park SB, Magovem GJ Jr, et al. Latissimus dorsi as a functioning synchronously paced muscle component in the repair of a left ventricular aneurysm. Ann Thorac Surg 1986;41:116.CrossRefGoogle Scholar
  15. 15.
    Salmons S, Sreter FA Significance of impulse activity in the transformation of skeletal muscle type. Nature 1976;263:30.PubMedCrossRefGoogle Scholar
  16. 16.
    Ianuzzo CD, Hamilton N, O’Brien PJ, et al. Biochemical transformation of canine skeletal muscle for use in cardiac-assist devices. J Appl Physiol 1990;68:1481.PubMedGoogle Scholar
  17. 17.
    Armenti F, Bitto T, Macoviak JA, et al. Transformation of canine diaphragm to fatigue-resistant muscle by phrenic nerve stimulation. Surg Forum 1984;35:259.Google Scholar
  18. 18.
    Frey M, Thomn H, Gruber H, et al. The chronically stimulated psoas muscle as an energy source for artificial organs. Eur J Surg Res 1984;16:232.Google Scholar
  19. 19.
    Koller R, Girsch W, Huber L, et al. Experimental in situ conditioning of the atissimus dorsi muscle for circulatory assist by multichannel stimulation. Artif Organs 1994;18:523.PubMedGoogle Scholar
  20. 20.
    Kochamba G, Chiu RCJ. The physiologic characteristics of transformed skeletal muscle for cardiac assist. Trans Am Soc Artif Organs 1987;33:404.Google Scholar
  21. 21.
    Hill AB, Li C, Tchervenkov C, et al. Dynamic cardiomyoplasty for hemodynamic support during acute pulmonary hypertension. J Thorac Cardiovasc Surg 1992; 103:1200.PubMedGoogle Scholar
  22. 22.
    Tardieu C, Tabary JC, Tardieu G, et al. Adaptation of sarcomere numbers to the length imposed on the muscle. Adv Physiol Sci 1981;24:99.Google Scholar
  23. 23.
    Herring SW, Grimm AF, Grimm BR, Regulation of sarcomere number in skeletal muscle: a comparison of hypothesis. Muscle and Nerve 1984;7:161.PubMedCrossRefGoogle Scholar
  24. 24.
    Gealow KK, Solien EE, Bianco RW, et al. Conformational adaptation of muscle: implications in cardiomyoplasty and skeletal muscle ventricles. Ann Thorac Surg 1993;56:520–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Carlson FD, Wilkie DR. Mechanical Aspects of Muscular Contraction. Muscle Physiology. Englewood Cliffs, NJ: Prentice-Hall Inc, 1974:25–51.Google Scholar
  26. 26.
    Chiu RCJ, Walsh GL, Dewar ML, et al. Implantable extra-aortic balloon assist powered by transformed fatigue-resistant skeletal muscle. J Thorac Cardiovasc Surg 1987;94:694.PubMedGoogle Scholar
  27. 27.
    Li C, Hill AB, Desrosiers C, et al. A new implantable pulse burst generator for skeletal muscle powered aortic counterpulsation. Trans Am Soc Artif Intern Organs 1989;35:620–5.Google Scholar
  28. 28.
    Frey M, Thorn H, Gruber H, et al. The chronically stimulated psoas muscle as an energy source for artificial organs: an experimental study in sheep. In: Chiu RCJ, ed. Biomechanical Cardiac Assist: Cardiomyoplasty and Muscle-Powered Devices. Mount Kisco, NY: Futura Publishing Co. Inc., 1986.Google Scholar
  29. 29.
    Arnold PG, Piaroloero RC, Waldorf JC. The serratus anterior muscle: intrathoracic and extrathoracic utilization. Plastic Reconstr Surg 1983,73:240.Google Scholar
  30. 30.
    Wijnberg DS, Hensen ABG, Grandjean PA, et al. The rectus abdominis cardiomyoplastic procedure: preliminary results. Artif Organs 1994;18:529.PubMedGoogle Scholar
  31. 31.
    Perier P, Acar C, Chachques JC. Anatomy of the Latissimus Dorsi Muscle: I. Description. In: Carpentier A, Chachques JC, Grandjean PA, eds. Cardiomyoplasty. Mount Kisco, NY: Futura Publishing Co. Inc.. 1991:63–8.Google Scholar
  32. 32.
    Radermecker MA, Triffaux M, Fourny J, et al. Anatomical rationale for use of atissimus dorsi flap during the cardiomyoplasty operation. Surg Radiol Anat 1992;14:5.PubMedCrossRefGoogle Scholar
  33. 33.
    Hagege A, Desnos M, Fernandez F, et al. Clinical study of the effects of latissimus dorsi muscle flap stimulation after cardiomyoplasty. Circulation 1995;92:II210.PubMedGoogle Scholar
  34. 34.
    Carpentier A, Chachques JC, Acar C, et. al. Dynamic cardiomyoplasty at seven years. J Thorac Cardiovasc Surg 1993;106:42.PubMedGoogle Scholar
  35. 35.
    Orghetti-Mario SA, Romano W, Bocchi EA, et al. Quality of life after cardiomyoplasty. J Heart Lung Transplant 1994;13:271.Google Scholar
  36. 36.
    Fumary AP, Swanson JS, Grunkemeier G, et al. Lessons learned before and after cardiomyoplasty: risk sensitive patient selection and post procedure quality of life. J Card Surg 1996;11:200.CrossRefGoogle Scholar
  37. 37.
    Tasdemir O, Kucukaksu SD, Vural KM, et al. A comparison of the early and midterm results after dynamic cardiomyoplasty in patients with ischemic or idiopathic cardiomyopathy. J Thorac Cardiovasc Surg 1997;113:73.Google Scholar
  38. 38.
    Kao RL, Christlieb IY, Magovem GJ, et al. The importance of skeletal muscle fiber orientation for dynamic cardiomyoplasty. J Thorac Cardiovasc Surg 1990;99:134.PubMedGoogle Scholar
  39. 39.
    Schreuder J, van der Veen F, van der Velte E, et al. Beat-to-beat analysis of left ventricular pressure-volume relation and strokevolume by conductance cathteter and aortic modelflow in cardiomyoplasty patiente. Circulation 1995;91:2010.PubMedGoogle Scholar
  40. 40.
    Lee KF, Dignan RJ, Parmar JM, et al. Effects of dynamic cardiomyoplasty on left ventricular performance and myocardial mechanics in dilated cardiomyopathy. J Thorac Cardiovasc Surg 1991;102:24.Google Scholar
  41. 41.
    Chen F, AkJog L, deGuzman B, et al. New techniques measures decreased transmural myocardial pressure in cardiomyoplasty. Ann Thorac Surg 1995;60:1678.PubMedCrossRefGoogle Scholar
  42. 42.
    Kawaguchi O, Goto Y, Futaki S, et al. Mechanical enhancement and myocardial oxygen saving by synchronized dynamic left ventricular compression. J Thorac Cardiovasc Surg 1992:103:573.PubMedGoogle Scholar
  43. 43.
    Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction: experimental observations and clinical implications. Circulation 1990:81:1161.PubMedGoogle Scholar
  44. 44.
    Capouya ER, Gerber RS, Drinkwater DC, et al. Girdling effect of nonstimulated cardiomyoplasty on left ventricular function. Ann Thorac Surg 1993;56:867.PubMedCrossRefGoogle Scholar
  45. 45.
    Kass DA, Baughman K, Pak P, et al. Reverse remodeling from cardiomyoplasty in human heart failure external constraint versus active assist. Circulation 1995;91:2314.PubMedGoogle Scholar
  46. 46.
    Oh JH, Badhwar V, Chiu RCJ. Mechanisms of dynamic cardiomyoplasty: current concepts J Cardiac Surg 1996;11:194.CrossRefGoogle Scholar
  47. 47.
    Mott BD, Oh JH, Misawa Y, et al. Mechanisms of cardiomyoplasty: comparative effects of adynamic versus dynamic cardiomyoplasty. Ann Thorac Surg 1998;65:1039.PubMedCrossRefGoogle Scholar
  48. 48.
    Oh JH, Badhwar V, Mott BD, et al. The effects of prosthetic cardiac binding and adynamic cardiomyoplasty in a model of dilated cardiomyopathy. J Thorac Cardiovasc Surg 1998;116:48Google Scholar
  49. 49.
    Fazio S, Sabatini D, Capaldo B, et al. A preliminary study of growth hormone in the treatment of dilated cardiomyopathy. N Engl J Med 1996;334:809.PubMedCrossRefGoogle Scholar
  50. 50.
    McDonald KM, Rector T, Carlyle PF, et al. Angiotensin-converting enzyme inhibition and beta-adrenoreceptor blockade regress established ventricular remodeling in a canine model of discrete myocardial damage. J Am Coll Cardiol 1994;24:1762.PubMedGoogle Scholar
  51. 51.
    Katz AM. Cardiomyopathy overload: a major determinant of prognosis in congestive heart failure. N Engl J Med 1990;322:100.PubMedCrossRefGoogle Scholar
  52. 52.
    Cohn JN. Structural basis for heart failure; ventricular remodeling and its pharmacological inhibition. Circulation 1995;91:2504.PubMedGoogle Scholar
  53. 53.
    Scheinn SA, Capek P, Radovancevic B, et al. The effects of prolonged left ventricular support on myocardial histopathology in patients with end-stage cardiomyopathy. ASAIO J 1992;38:M271.Google Scholar
  54. 54.
    McCarthy JF, McCarthy PM, Starling RC, et al. Partial left ventriculectomy and mitral valve repair for end-stage congestive heart failure. Eur J Cardiothorac Surg 1998;13:337.PubMedCrossRefGoogle Scholar
  55. 55.
    Li CM, Chiu RCJ. The mechanisms and optimization of programming. In: Brachman J, Stephenson LW. eds. Current Clinical Practices in Dynamic Cardiomyoplasty. New York: Futura Publishing, 1997:1–55.Google Scholar
  56. 56.
    Mott BD, Misawa Y, Lough JO, et al. Clinico-pathological correlation of dynamic cardiomyoplasty. Can J Cardiol 1996,11:133E.Google Scholar
  57. 57.
    Fritzsche D, Krakor R, Asmussen G, et al. Anabolic steroids (Metenolone) improve muscle performance and hemodynamic characteristics in cardiomyoplasty. Ann Thorac Surg 1995,59:961.PubMedCrossRefGoogle Scholar
  58. 58.
    Fumary AP, Jessup M, Moreira LFP. Multicenter trial of dynamic cardiomyoplasty for chronic heart failure. J Am Coll Cardiol 1996;28:1175.CrossRefGoogle Scholar
  59. 59.
    Robinson RJS, Truong DT, Odim JNK, et al. Dynamic cardiomyoplasty. J Cardiothorac Vasc Anesth 1992,16:476.CrossRefGoogle Scholar
  60. 60.
    Chiu RCJ. Cardiomyoplasty. In: Edmunds H Jr., ed. Cardiac Surgery in the Adult. New York: McGraw-Hill, 1997:1491–504.Google Scholar
  61. 61.
    Chiu RCJ, Odim JNK, Blundell PE, Dynamic Cardiomyoplasty. In: Kapoor AS, Laks H, eds. Atlas on Heart and Lung Transplantation. New York: McGraw Hill, 1994:25–36.Google Scholar
  62. 62.
    Mannion JD, Velchik M, Hammond R, et al. Effects of collateral blood vessel ligation and electrical conditioning on blood flow in dog latissimus dorsi muscle. J Surg Res 1986;47:332.CrossRefGoogle Scholar
  63. 63.
    Chachques JC, Carpentier A. Post-op management in cardiomyoplasty. In: Carpentier A. et al, eds. Cardiomyoplasty. Mount Kisco, NY: Future, 1991:131–8.Google Scholar
  64. 64.
    Carroll SM, Carroll CM, Stremel RW, et al. Vascular delay of the latissimus dorsi muscle: an essential component of cardiomyoplasty. Ann Thorac Surg 1997;63:1034.PubMedCrossRefGoogle Scholar
  65. 65.
    Helou J, Misawa Y, Stewart J, et al. Optimizing “delay period” for burst stimulation in dynamic cardiomyoplasty. Ann Thorac Surg 1995;59:74.PubMedCrossRefGoogle Scholar
  66. 66.
    Hudlicka O. Anatomical changes in chronically stimulated skeletal muscles. Semin Thorac Cardiovasc Surg 1991;3:106.PubMedGoogle Scholar
  67. 67.
    El Oakley RM, Jarvis J, Barman D, et al. Factors affecting the integrity of latissimus dorsi muscle grafts: implications for cardiac assistance from skletal muscle. J Heart Lung Transplant 1995; 14:359.PubMedGoogle Scholar
  68. 68.
    Ianuzzo CD, Ianuzzo SE, Locke M, et al. Preservation of the latissimus dorsi muscle during cardiomyoplasty. J Card Surg 1996; 11:99.PubMedCrossRefGoogle Scholar
  69. 69.
    Kalil-Filho R, Bocchi E, Weiss RG, et al. Magnetic resonance imaging evaluation of chronic changes in latissimus dorsi cardiomyoplasty. Circulation 1994;90:II102.PubMedGoogle Scholar
  70. 70.
    Ianuzzo CD, Ianuzzo SE, Carson N, et al. Cardiomyoplasty: degeneration of the assisting skeletal muscle. J Appl Physiol 1996,80:1205.PubMedGoogle Scholar
  71. 71.
    Davidse JH, van der Veen F, Lucas CM, et al. Structural alterations in the latissimus dorsi muscles in three patients more than 2 years after a cardiomyoplasty procedure. Eur Heart J 1998; 19:310.PubMedCrossRefGoogle Scholar
  72. 72.
    Kashem MA, Chiang BY, Ali A, et al. Preliminary report on continuous stimulation vs. intermittent stimulation of latissimus dorsi muscle in chronic canine model of cardiomyoplasty. Basic Appl Myol 1998;8:231.Google Scholar
  73. 73.
    Li CM, Chiu RCJ. The importance and limitations of prospective randomized studies for new, evolving surgical procedures: lessons from the dynamic cardiomyoplasty trial. Pacing Clin Electrophysiol 1996;19:2035.PubMedCrossRefGoogle Scholar
  74. 74.
    Mott BD, Austin LL, Chiu RCJ. Dynamic cardiomyoplasty: multicenter clinical trials. In: Cooper DKC, ed. The Transplantation and Replacement of ThoracicOrgans. Boston: Kluwer Academic Publishing, 1996:767–73.CrossRefGoogle Scholar
  75. 75.
    Furnary AP, Chachques JC, Moreira LF, et al. Long-term outcome, survival analysis, and risk stratification of dynamic cardiomyoplasty. J Thorac Cardiovasc Surg 1996;112:1640.PubMedCrossRefGoogle Scholar
  76. 76.
    Magovem GJ, Simpson KA. Clinical cardiomyoplasty: review of the ten-year United States experience. Ann Thorac Surg 1996;61:413.CrossRefGoogle Scholar
  77. 77.
    Chekanov VS, Deshpande S, Schmidt DH. Cardiomyoplasty combined with implantation of a cardioverter defibrillator. J Thorac Cardiovasc Surg 1997;114:489.PubMedCrossRefGoogle Scholar
  78. 78.
    Middlekauff HR, Stevenson WG, Warner-Stevenson L, et al. Syncope in advanced heart failure: high risk of sudden death regardless of origin of syncope. J Am Coll Cardiol 1993;21:110.PubMedGoogle Scholar
  79. 79.
    Larsen L, Markham J, Haffajee CI. Sudden death in idiopathic dilated cardiomyopathy: role of ventricular arrythmias. Pacing Clin Electrophysiol 1993;16:1051.PubMedCrossRefGoogle Scholar
  80. 80.
    Brachmann J, Hilbel T, Grunig E, et al. Ventricular arrhythmias in dilated cardiomyopathy. Pacing Clin Electrophysiol 1997;20:2714.PubMedCrossRefGoogle Scholar
  81. 81.
    Packer M. Sudden unexpected death in patients with congestive heart failure: a second frontier Circulation 1985;72:68I.Google Scholar
  82. 82.
    NHLBI. Report of the task force on research in heart failure. Bethesda, MD: US Department of Health and Human Services, publication No. PB95-129045, 1994Google Scholar
  83. 83.
    Boggrefe M, Chen X, Martinez-Rubio A, et al. The role of implantable cardioverter defibrillators in dilated cardiomyopathy. Am Heart J 1994;127:1145.CrossRefGoogle Scholar
  84. 84.
    Bocchi EA, Moriera LFP, de Moraes AV, et al. Arrhythmias and sudden death after dynamiccardiomyoplasty. Circulation 1994;90:II–107.Google Scholar
  85. 85.
    Chachdiques JC, Berrebi A, Hernigou A, et al. Study of muscular and ventricular function in dynamic cardiomyoplasty: a ten-year follow up. J Heart Lung Transplant 1997;16:854.Google Scholar
  86. 86.
    Thakur RK, Chow LH, Guiraudon GM, et al. Latissimus dorsi dynamic cardiomyoplasty: role of combined ICD implantation. J Card Surg 1995;10:295.PubMedCrossRefGoogle Scholar
  87. 87.
    Francischelli D, Peterson D, Stein P, et al. Cardiomyoplasty and defibrillator: a combined treatment for heart failure. In: Carpentier A, Chachques JC, Grandjean P, eds. Cardiac Bioassist. Armonk, NY: Futura Publishing, 1997:417–28.Google Scholar
  88. 88.
    Spotnitz HM, Ott GY, Bigger JT, et al. Methods of implantable cardioverter-defibrillator-pacemaker insertion to avoid interactions. Ann Thorac Surg 1992;53:253.PubMedCrossRefGoogle Scholar
  89. 89.
    Calkins H, Brinker J, Veltri EP, et al. Clinical interactions between pacemakers and automatic implantable cardioverter-defibrillators. J Am Coll Cardiol 1990;16:666.PubMedCrossRefGoogle Scholar
  90. 90.
    Francischelli DE, Gealow KK, Cerkvenik J, et al. Combined cardiomyoplasty/DDD bradycardia therapies. ASAIO J 1994,24:42.Google Scholar
  91. 91.
    Schlepper M, Neuzne J, Pitschner HF. Implantable cardioverter defibrillator: effect on survival. Pacing Clin Electrophysiol 1995;18.569.PubMedCrossRefGoogle Scholar
  92. 92.
    The Antiarrhythmics versus Implantable Defibrillators (AVID) Investigators. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N Engl J Med 1997;337:1576.CrossRefGoogle Scholar
  93. 93.
    Farrar DJ, Reichenbach SH, Hill JD. In vivo measurements of skeletal muscle in a linear configuration powering a hydraulically actuated VAD. ASAIO J 1994;40:M309.PubMedCrossRefGoogle Scholar
  94. 94.
    Whalen RL, Bowen MA, Lim GW, et al. A skeletal muscle powered ventricular assist device. ASAIO J 1996;25.Google Scholar
  95. 95.
    Badhwar V, Badhwar RK, Oh JH, et al. Power generation from four skeletal muscle configurations: design implications for a muscle powered cardiac assist device. ASAIO J 1997; 43:M651.PubMedGoogle Scholar
  96. 96.
    Li CM, Chiu RCJ: Surgical ventricular remodelling: Pathophysiological basis for cardioreduction (Batista) operation. Heart Failure Review 1997;2:71.CrossRefGoogle Scholar
  97. 97.
    Chiu RCJ: Using skeletal muscle for cardiac assistance. Science and Medicine (Scientific American), 1994. Nov/Dec:68.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Vinay Badhwar
  • David Francischelli
  • Ray C-J. Chiu

There are no affiliations available

Personalised recommendations