A Prelude to Sampling, Wavelets, and Tomography

  • Ahmed I. Zayed
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


This chapter is an introduction to the book and its aim is two-fold:
  1. (1)

    To give a short introduction to the three themes mentioned in the book’s title, sampling, wavelets, and tomography, and to shed some light on their interconnection.

  2. (2)

    To provide an overview of the subsequent chapters and show how they are tied together.



Wavelet Coefficient Besov Space Multiresolution Analysis Riesz Basis Gabor Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.Benedetto and P. FerreiraModern Sampling TheoryBirkhäuser, Boston, MA (2000).Google Scholar
  2. [2]
    C. Berenstein and D. Walnut, Local inversion of the Radon Transform in even dimensions, in 75 Years of Radon transform, Edited by S. Gindikin and P. Michor, International Press Inc., New York (1994).Google Scholar
  3. [3]
    P.L.Butzer and R. L. Stens, Sampling theory for not necessarily band-limited functions: a historical overviewSIAM Rev.34, (1992), pp. 40–53.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    P. L. Butzer, W. Splettstößer, and R. L. Stens, The sampling theorem and linear prediction in signal analysisJahresber. Deutsch. Math.-Verein.90, (1988), pp. 1–70.zbMATHGoogle Scholar
  5. [5]
    P. L. Butzer and W. Splettstößer, Approximation theorems for duration-limited functions with error estimatesInform. and Control34, (1977), pp. 55–65.CrossRefzbMATHGoogle Scholar
  6. [6]
    C.R. Crawford and K. F. King, Computed tomography scanning with simultaneous patient translationMedical Physics 17(1990), pp. 967–982.CrossRefGoogle Scholar
  7. [7]
    I. DaubechiesTen Lectures on WaveletsSIAM Publ., Philadelphia, PA (1992).CrossRefzbMATHGoogle Scholar
  8. [8]
    G. Deslauriers and S. Dubuc, Interpolation dyadique, inFractal, Dimensions Non Entières et Applications(1987),pp. 44–55.Google Scholar
  9. [9]
    D. L. Donoho,Smooth wavelet decomposition with blocky coefficient kernels, inRecent Advances in Wavelet AnalysisL. L. Schumaker and G. Webb (eds.), Academic Press, New York, (1993), pp. 259–308.Google Scholar
  10. [10]
    J. Duchon, Sur l’erreur d’interpolation des fonctions de plusieurs variables par lesD m -splines, R.A.I.R.O.Analyse Numeriques 12(1978), pp. 325–334.MathSciNetzbMATHGoogle Scholar
  11. [11]
    J. Duchon, Splines minimizing rotation-invariant semi-norms in Sobolev spacesConstructive Theory of Functions of Several VariablesW. Schempp and K. Zeller (eds.), Springer, Berlin, (1977), pp. 85–100.CrossRefGoogle Scholar
  12. [12]
    J. Duchon, Interpolation des Fonctions de deux variables suivant le principe de la flexion des plaques minces, R.A.I.R.O.Analyse Numeriques10, (1976), pp. 5–12.MathSciNetGoogle Scholar
  13. [13]
    F. R. Farrokhi, K. Ray Liu, C. Berenstein, and D. Walnut, Wavelet-based multiresolution local tomographyIEEE Trans. on Imag. Processing6, No. 10 (1997), pp. 1412–1430.CrossRefGoogle Scholar
  14. [14]
    D. Gabor, Theory of CommunicationJ. IEE (London)93, (1946), pp. 429–457.Google Scholar
  15. [15]
    A. Grossman and J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shapeSIAM J. of Math. Analysis15 (4), (1984), pp. 723–736.CrossRefGoogle Scholar
  16. [16]
    D. Han, D. Larson, M. Papadakis, and T. Stavropoulas, Multiresolution analysis of abstract Hilbert spaces and wandering subspacesTrans. Amer. Math. Soc 247(1999), pp. 259–284.Google Scholar
  17. [17]
    J. R.HigginsSampling Theory in Fourier and Signal Analysis: FoundationsOxford University Press, Oxford (1996).zbMATHGoogle Scholar
  18. [18]
    J. R. Higgins, Five short stories about the cardinal seriesBull. Amer. Math. Soc 12(1985), pp. 45–89.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    S. Jaffard, Oscillation spaces: Properties and applications to fractal and multifractal functionsJ. Math. Phys.39, n. 8, (1998), pp. 4129–4141.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S. Jaffard, Y. Meyer, and R. RyanWavelets: Tools for Science and TechnologyS.I.A.M., Philadelphia, PA (2001).CrossRefGoogle Scholar
  21. [21]
    A. J. Jerri, The Shannon Sampling Theorem-its various extensions and applications: a tutorial review, Proc. IEEE, 65, Nov. (1977), pp. 1565–1596.CrossRefGoogle Scholar
  22. [22]
    W. A. Kalender, W. Seissler, E. Klotz, and P. Vock, Spiral volumetric CT with single-breath-hold technique continuous scanner rotationRadiology 176(1990), pp. 181–183.Google Scholar
  23. [23]
    V.Kotel’nikov,On the carrying capacity of the ether and wire in telecommunications, Material for the first All-Union Congress on Questions of CommunicationsIzd. Red. Upr. Svyazi RKKAMoscow, Russia (1933).Google Scholar
  24. [24]
    S. MallatA Wavelet Tour of Signal ProcessingAcademic Press, New York (1998).zbMATHGoogle Scholar
  25. [25]
    S. Mallat, A theory for multiresolution signal decomposition: the wavelet representationIEEE Trans. on Pattern Anal. Machine Intell11, (1989), pp. 674–693.CrossRefzbMATHGoogle Scholar
  26. [26]
    S. Mallat, Multiresolution approximation and waveletsTrans. Amer. Math. Soc 315(1989), pp. 69–88.MathSciNetzbMATHGoogle Scholar
  27. [27]
    J. J. McNamee, E. L. Whitney, and F. Stenger, Whittaker’s Cardinal Function in Retrospect, Math. Comp., 25, (1971), pp. 141–154.MathSciNetzbMATHGoogle Scholar
  28. [28]
    J. Meinguet, Surface spline interpolation: basic theory and computational aspectsApproximation Theory and Spline FunctionsS. P. Singh, J. H. Bury, and B. Watson (eds.), Reidel, Dordrecht, (1984), pp. 127–142.Google Scholar
  29. [29]
    Y. MeyerOndelettes et OpérateursHermann, Paris (1990).Google Scholar
  30. [30]
    J.Morlet, G. Arens, I. Fourgeau, and D. Giard, Wave propagation and sampling theoryGeophysics47,(1982),pp. 203–236.CrossRefGoogle Scholar
  31. [31]
    H.Nyquist, Certain topics in telegraph transmission theory,AIEE Trans., 47, Jan. (1928),pp.617–644.Google Scholar
  32. [32]
    J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwärte längs gewisser manningfaltigkeitenBer. Verh. Sächs. Akad. Wiss. Math.-Nat.Leipzig, 69, (1917), pp. 262–277.Google Scholar
  33. [33]
    C. E. Shannon, Communication in the presence of noiseProc. IRE 137(1949), pp. 10–21.MathSciNetCrossRefGoogle Scholar
  34. [34]
    F. StengerNumerical Methods Based on Sinc and Analytic FunctionsSpringer, New York, 1993.CrossRefzbMATHGoogle Scholar
  35. [35]
    F. Stenger, Numerical methods based on Whittaker cardinal or sinc functionsSIAM Rev.23, (1981), pp. 165–223.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    F. Stenger, Approximations via the Whittaker cardinal functionJ. Approx. Theory 17(1976), pp. 222–240.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    H. K. Tuy, An inversion formula for cone-beam reconstructionSIAM J. Appl. Math.43, (1983), pp. 546–552.MathSciNetCrossRefGoogle Scholar
  38. [38]
    E. T. Whittaker, On the functions which are represented by the expansion of the interpolation theoryProc. Roy. Soc. Edinburgh, Sec. A35, (1915), pp. 181–194.Google Scholar
  39. [39]
    N. WienerThe Fourier Integral and Certain of Its ApplicationsMIT Press, Cambridge, MA (1933).Google Scholar
  40. [40]
    A. I. Zayed and P. L. Butzer, Lagrange interpolation and sampling theorems, inNonuniform Sampling: Theory and ApplicationsF. Marvasti (ed.), Kluwer Academic/Plenum, New York (2001).Google Scholar
  41. [41]
    A. I. ZayedAdvances in Shannon’s Sampling TheoryCRC Press, Boca Raton, FL (1993).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Ahmed I. Zayed

There are no affiliations available

Personalised recommendations