Robustness of Regular Sampling in Sobolev Algebras

  • Hans G. Feichtinger
  • Tobias Werther
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


It is the purpose of this paper to feature the link between the theory of minimal norm interpolation over lattices by elements fromSobolev algebras H s (S d )with what is known as the theory of spline-type (or principal shift invariant) spaces. As an extremely useful tool allowing us to establish various kinds of robustness results we will present the Wiener amalgam spacesW(B, l p with general (smooth) local components and globall p behavior. For this reason a summary of their most important properties, including convolution relations and the behavior under the Fourier transform, is presented.

The discussion of projection and minimal norm interpolation operators is not restricted to the pure Hilbert space setting for which these concepts were developed originally. Among others we show LP-stability of the (for p = 2 orthogonal) projection from LP onto the corresponding spline-type spaces with lP-coefficients.

As a main result (which can be formulated in several different concrete ways) we show that for s > d/2 the mapping f ↦ Qs, a(f), from f to the minimal norm interpolation in Hs over the lattice aℤd, a >, depends continuously on the input parameters (s, a). It also extends to certain fractional LP-Sobolev spaces consisting of continuous functions in LP. In this modified setting the outcome of this procedure depends continuously on (s, a) in the LP sense. Moreover, the mapping is robust against small jitter errors. Wiener amalgam spaces tum out to be very useful, both for a precise formulation and in the proofs of such results.


Banach Space Reproduce Kernel Hilbert Space Riesz Basis Atomic Decomposition Closed Linear Span 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. AdamsSobolev Spaces.Academic Press, New York, 1975.zbMATHGoogle Scholar
  2. [2]
    A. Aldroubi, Non-uniform weighted average sampling and reconstruction in shift invariant and wavelet spacesComput. Harmon. Anal.13(2): 151–161,2002.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Aldroubi and H. G. Feichtinger, Exact reconstruction from non-uniformly distributedweighted-averages . In Wavelet Analysis: Twenty Years’ Developments, D. X. Zhou, ed. pages 1–9. World Scientific Press, Singapore, 2002.CrossRefGoogle Scholar
  4. [4]
    A. Aldroubi and K. Gröchenig, Non-uniform sampling and reconstruction in shift-invariant spaces.SIAM Rev.43(4): 585–620, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Aldroubi, Q. Sun, and W. S. Tang, p-frames and shift invariant spaces ofL p.J Fourier Anal. Appl7 (1): 1–21, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Aldroubi and M. Unser, Families of wavelet transforms in connection with Shannon’s sampling theory and the Gabor transform. In Wavelets: a tutorial in theory and applicationsWavelet Anal. Appl.2: 509–528, 1992.MathSciNetGoogle Scholar
  7. [7]
    A. Aldroubi and M. Unser, Sampling procedure in function spaces and asymptotic equivalence with Shannon’s sampling theory.Numer. Funct. Anal. and Optimiz.15(1): 1–21, 1994.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    N. Aronszajn and K. T. Smith, Theory of Bessel potential spaces, I.Ann. Inst. Fourier11:385–475,1961.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J. J. Benedetto and P. J. S. G. FerreiraModern Sampling Theory.Birkhäuser, Boston, MA, 2000.Google Scholar
  10. [10]
    C. de Boor, R. DeVore, and A. Ron, The structure of finitely generated shift-invariant spaces inL 2 (R d J. Funct. Anal119: 37–78, 1994.CrossRefzbMATHGoogle Scholar
  11. [11]
    P. G. Cazassa and O. Chnstensen, Perturbation of operators and applications to frame theory.J. Fourier Anal. Appl.3(5): 543–557, 1997. Dedicated to the memory of Richard J. Duffin.MathSciNetCrossRefGoogle Scholar
  12. [12]
    W. Chen and S. Itoh, A sampling theorem for shift-invariant subspace.IEEE Trans. Signal Process.46(10): 2822–2824, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    W. Chen, S. Itoh, and J. Shiki, Irregular sampling theorems for wavelet subspaces.IEEE Trans. Inform. Theory44(3): 1131–1142,1998.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    W. Chen, S. Itoh, and J. Shiki, On sampling in shift invariant spaces.IEEE Trans. Signal Process46(10): 2822–2824, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    W. Chen, B. Han, and R. Q. Jia, A simple oversampled A/D conversion in shift invariant spacespreprint2002.Google Scholar
  16. [16]
    O. Chnstensen, Frame perturbation.Proc. Amer. Math. Soc.123: 1217–1220, 1995.MathSciNetCrossRefGoogle Scholar
  17. [17]
    O. Christensen, An introduction to frames and Riesz bases.Applied and Numerical Harmonic Analysis.Birkhäuser, Boston, MA, 2002.Google Scholar
  18. [18]
    O. Christensen and C. Heil, Perturbations of Banach frames and atomic decompositions.Math. Nach.185: 33–47, 1997.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    F. J. Delvos, Interpolation in harmonic Hilbert spaces.Mathematical Modelling and Numerical Analysis31(4): 435–458, 1997.MathSciNetzbMATHGoogle Scholar
  20. [20]
    J. Duchon, Splines minimizing rotation-invariant seminormas in Sobolev spaces. In W.Schempp and K. Zeller, editors Constructive Theory of Functions of Several Variablesvolume 571 ofLecture Notes in Mathematicspages 85–100. Springer-Verlag, Berlin, 1977.Google Scholar
  21. [21]
    R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series.Trans. Amer. Math. Soc.72(2): 341–366, 1952.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    H. G. Feichtinger, Banach convolution algebras of Wiener type. InProc. Conf. Func-tions, Series, Operators, Budapestpp. 509–524Colloquia Math. Soc J. BolyaiNorth-Holland Publ. Co., Amsterdam, 1980.Google Scholar
  23. [23]
    H. G. Feichtinger, Compactness in translation invariant Banach spaces of distributions and compact multipliers.J. Math. Anal. Appl.102: 289–327, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    H. G. Feichtinger, An elementary approach to the generalized Fourier transform. In T. Rassias, editorTopics in Mathematical Analysispp. 246–272. World Sci. Publ., Singapore, 1989. Dedicated to the memory of A. L. Cauchy, Ser. Pure Math. 11.Google Scholar
  25. [25]
    H. G. Feichtinger, Generalized amalgams with applications to the Fourier transform.Canad J. Math.42: 395–409, 1990.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    H. G. Feichtinger, Amalgam spaces and generalized harmonic analysis. InProc. of the Norbert Wiener Centenary Congress, 1994volume 52 ofProc. Symp. Appl. MathAMS, 1996.Google Scholar
  27. [27]
    H. G. Feichtinger, New results on regular and irregular sampling based on Wiener amalgams. In K. Jarosz, editorFunction spaces, Proc. ConfEdwardsville, IL (USA) 1990, Vol. 136 of Lect. Notes Pure Appl. Mathpp. 107–121, Dekker, 1992.Google Scholar
  28. [28]
    H. G. Feichtinger, Wiener amalgams over Euclidean spaces and some of their applications. In K. Jarosz, editorFunction Spaces, Proc. ConfEdwardsville, IL (USA) 1990, Vol. 136 of Lect. Notes Pure Appl. Mathpp. 123–137, Dekker, 1992.Google Scholar
  29. [29]
    H. G. Feichtinger, Spline-type spaces in Gabor Analysis. In:Wavelet Analysis: Twenty Years’ DevelopmentsD.X. Zhou (ed.), World Scientific Press, Singapore, 2002.Google Scholar
  30. [30]
    H. G. Feichtinger and K. Gröchenig, Error analysis in regular and irregular sampling theory.Applicable Analysis50(3–4): 3–4, 1993.MathSciNetzbMATHGoogle Scholar
  31. [31]
    H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. I.J. Funct. Anal86(2):307–340, 1989.CrossRefzbMATHGoogle Scholar
  32. [32]
    H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. II.Monatsh. Math108 (2/3): 129–148, 1989.Google Scholar
  33. [33]
    H. G. Feichtinger and G. Zimmermann, A Banach space of test functions for Gabor analysis. InGabor Analysis and Algorithms. Theory and ApplicationsH. G. Feichtinger and T. Strohmer (eds.), pp. 123–170 and 123–170. A volume inApplied and Numerical Harmonic AnalysisBirkhäuser, Boston, MA, 1998.Google Scholar
  34. [34]
    H. G. Feichtinger and N. Kaiblinger, Varying the time-frequency lattice of Gabor frames.Trans. Amer. Math. Socto appear.Google Scholar
  35. [35]
    H. G. Feichtinger and S.S. Pandey, Error estimates for irregular sampling of band-limited distributions on a locally compact Abelian group.Journal of Mathematical Analysis and Applications279(2): 380–397, 2003.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    H. G. Feichtinger and S.S. Pandey, Minimal norm interpolation in Harmonic Hilbert spaces and Wiener amalgam spaces over locally compact Abelian groups. In preparation, 2003.Google Scholar
  37. [37]
    J. J. Fournier and J. Stewart, Amalgams ofL Pandl q . Bull. Amer. Math. Soc.13:1–21, 1985.MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    K. Gröchenig, Describing functions: Atomic decompositions versus frames.Monatsh. Math.112(3): 1–42,1991.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    K. Gröchenig, Foundations of time-frequency analysis.Applied and Numerical Harmonic Analysis.Birkhäuser, Boston, MA, 2001.Google Scholar
  40. [40]
    K. Gröchenig, Localization of frames, Banach frames, and the invertibility of the frame operator.Journal of Applied Fourier Analysis10, 2004, to appear.Google Scholar
  41. [41]
    C. Heil, An introduction to Wiener amalgams. InWavelets and Their ApplicationsM. Krishna, R. Radha, and S. Thangavelu (eds.), 183–214. Allied Publisher Private Limited, 2003.Google Scholar
  42. [42]
    R. Q. Jia, Stability of the shifts of a finite number of functions.J. Approx. Th.95: 194–202, 1998.CrossRefzbMATHGoogle Scholar
  43. [43]
    R. Q. Jia and C. A. Micchelli, On linear independence of integer translates of a finite number of functions.Proc. Edinburgh Math. Soc.36: 69–85, 1992.MathSciNetCrossRefGoogle Scholar
  44. [44]
    Y. KatznelsonAn Introduction to Harmonic Analysis.Dover, New York, 1976.Google Scholar
  45. [45]
    Y. Liu, Irregular sampling for spline wavelet subspaces.IEEE Trans. Inform. Theory42: 623–627, 1996.MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    Y. Liu and G. G. Walter, Irregular sampling in wavelet subspaces.J. Fourier Anal. Appl.2(2): 181–189, 1996.MathSciNetCrossRefGoogle Scholar
  47. [47]
    W. R. Madych, Spline type summability for multivariate sampling. Analysis of divergence. Control and management of divergent processes.Proceedings of the 7th In-ternational Workshop in Analysis and Its Applications, IWAAOrono, ME, USA June 1–6, 1997., W. O. Bray et al. (ed.) pp. 1–6. A volume inApplied and Numerical Harmonic AnalysisBirkhäuser, Boston, MA, 1999.Google Scholar
  48. [48]
    M. Z. Nashed andG.G.Walter, General sampling theorems for functions in reproducing kernel Hilbert spaces.Mathematics of Control, Signals, and Systems4(4): 363–390, 1991.MathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    J. P. Oakley, M. J. Cunningham, and G. Little, A Fourier-domain formula for the least squares projection of a function on a repetitive basis inn-dimensional space.IEEE Trans. ASSP,38(1)114–120,1990.MathSciNetzbMATHGoogle Scholar
  50. [50]
    K. A. Okoudjou, Embeddings of some classical Banach spaces into modulation spaces.Proc. of the Amer. Math. Socsubmitted.Google Scholar
  51. [51]
    I. Pesenson, A reconstruction formula for band limited functions inL2(R d ). Proc. Am. Math. Soc .127(12): 3593–3600, 1999.MathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    H. Reiter and J. StegemanClassical Harmonic Analysis and Locally Compact Groups.2nd ed. Vol. 22 of London Math. Soc. Monographs. New Series.Clarendon Press, Oxford, 2000.Google Scholar
  53. [53]
    W. RudinFunctional Analysis. Int. Series in Pure and Applied Math.McGraw-Hill, New York, 1991.Google Scholar
  54. [54]
    I. J. SchoenbergCardinal Spline Interpolation.Volume 12 of CBMS-NSF Regional Conference Series in Applied MathematicsSIAM, Philadelphia, PA, 1973.CrossRefGoogle Scholar
  55. [55]
    E. M. SteinSingular Integrals and Differentiability Properties of Functions.Princeton University Press, Princeton, NJ, 1970.Google Scholar
  56. [56]
    W. Sun and X. Zhou, Sampling theorem for wavelet subspaces: Error estimate and irregular sampling.IEEE Trans. Signal Process.48(1): 223–226, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    W. Sun and X. Zhou, Average sampling in spline subspaces.Applied Mathematics Letters15(2): 233–237, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    Ph. Tchamitchian, Generalisation des algèbres de Beurling.Ann. Inst. Fourier34(4): 151–168,1984.MathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    H. TriebelInterpolation Theory, Function Spaces, and Differential Operators.2nd ed. Barth-Verlag, Heidelberg, Leipzig, 1994.Google Scholar
  60. [60]
    H. TriebelTheory of Function Spaces II.Volume 84 of Monographs in MathematicsBirkhäuser, Boston, MA, 1992.CrossRefGoogle Scholar
  61. [61]
    M. Unser and A. Aldroubi, A general sampling theory for non-ideal acquisition devices.IEEE Trans. on Signal Processing42(11): 2915–2925, 1994.CrossRefGoogle Scholar
  62. [62]
    M. Unser, A. Aldroubi, and M. Eden, A sampling theory for polynomial splines. InISITA’90pp. 279–282, 1990.Google Scholar
  63. [63]
    M. Unser, A. Aldroubi, and M. Eden, Polynomial spline signal approximations: filter design and asymptotic equivalence with Shannon’s sampling theorem.IEEETIP38: 95–103,1991.MathSciNetGoogle Scholar
  64. [64]
    G.G.Walter, A sampling theorem for wavelet subspaces.IEEE Trans. Inform. Theory38(2): 881–884, 1992.MathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    R. M. YoungAn Introduction to Nonharmonic Fourier Series.Academic Press, New York, 1980 (revised edition: 2001).Google Scholar
  66. [66]
    R. M. Young, Interpolation and frames in certain Banach spaces of entire functions.J. Fourier Anal. Appl.3(5): 639–645, 1997.MathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    X. Zhou and W. Sun. On the sampling theorem for wavelet subspaces.J. Fourier Anal. Appl.5(4): 347–354, 1999.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Hans G. Feichtinger
  • Tobias Werther

There are no affiliations available

Personalised recommendations