Function Spaces Based on Wavelet Expansions

  • Stéphane Jaffard
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


Several extensions of Besov spaces are studied. They take into account the distributions of wavelet coefficients at each scale and the correlations between the positions of the large wavelet coefficients. These new spaces allow us to formalize two new notions: the “contour-type” functions, which display the strongest possible correlations, and the “shuffled-type” functions, which display the weakest possible correlations. These notions depend neither on the particular wavelet basis chosen nor on an a priori statistical model. Several examples taken from image and signal processing illustrate these notions.


Function Space Wavelet Coefficient Besov Space Wavelet Basis Dyadic Cube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Abramovich, T. Sapatinas, and B. Silverman, Wavelet thresholding via a Bayesian approachJ. Roy. Stat. Soc. Ser. BVol. 60 p. 725–749, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Arneodo, E. Bacry, and J.-F. Muzy, Random cascades on wavelet dyadic treesJ. Math. Phys.Vol. 39 n. 8 p. 4142–4164, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J.-M. Aubry and S. Jaffard, Random wavelet seriesComm. Math. Phys.Vol. 227 p. 483–514, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    A. Benassi, S. Jaffard, and D. Roux, Elliptic Gaussian random processesRevista Math-ematica lberoamericana Vol. 13 N.lpp. 19–90, 1997.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    R. Buccigrossi and E. Simoncelli, Image compression via joint statistical characterization in the wavelet domain, Preprint, 1997.Google Scholar
  6. [6]
    F. Chilla, J. Peinke, and B. Castaing, Multiplicative process in turbulent velocity statistics: A simplified analysisJ. Phys. II FranceVol. 6 p. 455–460, 1996.CrossRefGoogle Scholar
  7. [7]
    A. Cohen, W. Dahmen, I. Daubechies, and R. DeVore, Tree approximation and encoding Preprint, 2000.Google Scholar
  8. [8]
    A. Cohen, I. Daubechies, and J.-C. Fauveau, Biorthogonal bases of compactly supported waveletsComm. Pure Appl. Math.V. 44 p. 485–560, 1992.CrossRefGoogle Scholar
  9. [9]
    A. Cohen and R. RyanWavelets and Multiscale Signal ProcessingChapman & Hall, New York, 1995.zbMATHGoogle Scholar
  10. [10]
    I. Daubechies, Orthonormal bases of compactly supported waveletsComm. Pure and Appl. Math.Vol. 41 p. 909–996, 1988.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    R. DeVore, Nonlinear ApproximationActa Numericap. 1–99, 1998.Google Scholar
  12. [12]
    D. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard, Wavelet shrinkage: Asymptopia?J. Roy. Stat. Soc. Ser. BVol. 57, no. 2, p. 301–369, 1995.MathSciNetzbMATHGoogle Scholar
  13. [13]
    Huang and D. Mumford, Statistics of natural images and models, Preprint.Google Scholar
  14. [14]
    S. Jaffard, Oscillation spaces: Properties and applications to fractal and multifractal functionsJ. Math. Phys.Vol. 39 n. 8 p. 4129–4141, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    S. Jaffard, Beyond Besov spaces Part 1: Distributions of wavelet coefficients, Preprint, 2002.Google Scholar
  16. [16]
    S. Jaffard, Beyond Besov spaces Part 2: Oscillation spaces, Preprint, 2002.Google Scholar
  17. [17]
    S. Jaffard and Y. Meyer, On the pointwise regularity of functions in critical Besov spacesJ. Func. Anal.Vol. 175 p. 415–434, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    S. Jaffard, Y. Meyer, and R. RyanWavelets: Tools for Science and TechnologySIAM, Philadelphia, PA, 2001.CrossRefGoogle Scholar
  19. [19]
    I. Johnstone and B. Silverman, Empirical Bayes approaches to mixture problems and wavelet regression, Preprint.Google Scholar
  20. [20]
    J.-P. Kahane and J. Peyriere, Sur certaines martingales de Benoit MandelbrotAdvances Math.22, 131–145, 1976.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    P.-G. Lemariè and Y. Meyer, Ondelettes et bases hilbertiennesRev. Mat. IberoamericanaVol. 1 p. 1–18,1986.CrossRefGoogle Scholar
  22. [22]
    S. Mallat, A theory for multiresolution signal decomposition: the wavelet representationIEEE Trans. on Pattern Anal. Machine Intell.Vol. 11 p. 674–693, 1989.CrossRefzbMATHGoogle Scholar
  23. [23]
    S. Mallat, AWavelet Tour of Signal ProcessingAcademic Press, New York, 1998.zbMATHGoogle Scholar
  24. [24]
    B. MandelbrotFractals and Scaling in FinanceSpringer, Berlin, 1997.zbMATHGoogle Scholar
  25. [25]
    Y. MeyerOndelettes et OpérateursHermann, Paris, 1990.Google Scholar
  26. [26]
    Y. Meyer, F. Sellan, and M. Taqqu, Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motionJ. Four. Anal. App.Vol. 5 no. 5 p.465–494, 1999.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    P. Müller and B. Vidakovic (Eds.), Bayesian inference in wavelet based modelsLect. Notes Stat.Vol. 141, Springer-Verlag, 1999.CrossRefzbMATHGoogle Scholar
  28. [28]
    J. O’Neil and C. Meneveau, Spatial correlations in turbulence: Predictions from the multifractal formalism and comparison with experimentsJ. Phys. FluidsA 5, no. 1, 158–172, 1993.Google Scholar
  29. [29]
    S. Resnick, A. Gilbert, and W. Willinger, Wavelet analysis of conservative cascades, Preprint, Cornell University.Google Scholar
  30. [30]
    A. Said and W. A. Pearlman, An image multiresolution representation for lossless and lossy compressionIEEE Trans. Image Proc.5, no. 9 p. 1303–1310, 1996.CrossRefGoogle Scholar
  31. [31]
    J. Shapiro, Embedded image coding using zero-trees of wavelet coefficientsIEEE Trans. Image Proc31 p. 3445–3462, 1993.Google Scholar
  32. [32]
    E. Simoncelli, Bayesian denoising of visual images in the wavelet domainLect. Notes Stat.141, Springer p. 291–308, 1999.CrossRefGoogle Scholar
  33. [33]
    H. TriebelTheory of Function Spaces. IIBirkhäuser, Boston, MA, 1992.CrossRefzbMATHGoogle Scholar
  34. [34]
    B. Vidakovic, A note on random densities via waveletsStat. Proba. Let.Vol. 26, p. 315–321,1996.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    W. Willinger, M. Taqqu, and A. Erramili, A bibliographical guide to selfsimilar traffic and performance modeling for modern high-speed networks, Stochastic Networks, Theory and Applications, p. 339–366, F. Kelly, S. Zachary and I. Zieldins, (eds.), Clarendon Press, Oxford, 1996.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Stéphane Jaffard

There are no affiliations available

Personalised recommendations