Advertisement

Arbitrary Switching

  • Zhendong SunEmail author
  • Shuzhi Sam Ge
Chapter
Part of the Communications and Control Engineering book series (CCE)

Abstract

Chapter 2 focuses on the guaranteed stability analysis of switched dynamical systems under arbitrary switching. As global uniform asymptotic stability is equivalent to the existence of a common Lyapunov function of the subsystems, the Lyapunov approach plays a dominant role in the stability analysis. For switched linear systems, emphasis is laid on the sets of functions that are universal in the sense that each asymptotically stable system admits a Lyapunov function from the function set. We also pay much attention to the algebraic theory of discrete-time switched linear systems, where the stability is elegantly characterized by the spectral radius of the matrix set, which generalizes the standard matrix spectral theory. To approximate the spectral radius numerically, the homogeneous polynomials are utilized to serve as common Lyapunov functions, where the sum of squares technique and the semi-definite programming are used to searching for suitable homogeneous polynomial Lyapunov functions. Finally, the more subtle issue of marginal stability is carefully examined, and its connection to the common weak Lyapunov function is established. We reveal that marginal stability admits a block triangular decomposition with clear spectral information, and this leads to an invariant set viewpoint for characterizing marginal stability and marginal instability.

Keywords

Arbitrary Switching Common Lyapunov Function Joint Spectral Radius Marginal Instability Polytopic Systems 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Agrachev AA, Liberzon D. Lie-algebraic stability criteria for switched systems. SIAM J Control Optim. 2001;40(1):253–69. zbMATHCrossRefMathSciNetGoogle Scholar
  2. 3.
    Aizerman MA. On a problem concerning stability “in large” of the dynamic systems. Usp Mat Nauk. 1949;4(4):186–8. MathSciNetGoogle Scholar
  3. 4.
    Aizerman MA, Gantmakher FR. Absolyutnaya ustoichivost reguliruemykh sistem (Absolute stability of the controlled systems). Moscow: Akad Nauk SSSR; 1963. Google Scholar
  4. 5.
    Al’pin YA, Ikramov KD. Reducibility theorems for pairs of matrices as rational criteria. Linear Algebra Appl. 2000;313(1–3):155–61. zbMATHCrossRefMathSciNetGoogle Scholar
  5. 7.
    Ando T, Shih M-H. Simultaneous contractibility. SIAM J Matrix Anal Appl. 1998;19(2):487–98. zbMATHCrossRefMathSciNetGoogle Scholar
  6. 8.
    Angeli D. A note on stability of arbitrarily switched homogeneous systems. Preprint; 1999. Google Scholar
  7. 13.
    Aubin JP, Cellina A. Differential inclusions. Berlin: Springer; 1984. zbMATHGoogle Scholar
  8. 14.
    Auslander J, Seibert P. Prolongations and stability in dynamical systems. Ann Inst Fourier (Grenoble). 1964;14:237–68. zbMATHMathSciNetGoogle Scholar
  9. 21.
    Barvinok A. A course in convexity. Providence: Am Math Soc; 2002. zbMATHGoogle Scholar
  10. 22.
    Bell JP. A gap result for the norms of semigroups of matrices. Linear Algebra Appl. 2005;402(1–3):101–10. zbMATHCrossRefMathSciNetGoogle Scholar
  11. 25.
    Berger M, Wang Y. Bounded semigroups of matrices. Linear Algebra Appl. 1992;166:21–7. zbMATHCrossRefMathSciNetGoogle Scholar
  12. 30.
    Blanchini F. Nonquadratic Lyapunov function for robust control. Automatica. 1995;31(3):451–61. zbMATHCrossRefMathSciNetGoogle Scholar
  13. 31.
    Blanchini F. Set invariance in control. Automatica. 1999;35(11):1747–67. zbMATHCrossRefMathSciNetGoogle Scholar
  14. 32.
    Blanchini F. The gain scheduling and the robust state feedback stabilization problems. IEEE Trans Autom Control. 2000;45(11):2061–70. zbMATHCrossRefMathSciNetGoogle Scholar
  15. 33.
    Blanchini F, Miani S. On the transient estimate for linear systems with time-varying uncertain parameters. IEEE Trans Circuits Syst I, Fundam Theory Appl. 1996;43(7):592–6. CrossRefMathSciNetGoogle Scholar
  16. 34.
    Blanchini F, Miani S. A new class of universal Lyapunov functions for the control of uncertain linear systems. IEEE Trans Autom Control. 1999;44(3):641–7. zbMATHCrossRefMathSciNetGoogle Scholar
  17. 37.
    Blondel VD, Nesterov Yu. Computationally efficient approximations of the joint spectral radius. SIAM J Matrix Anal Appl. 2005;27(1):256–72. zbMATHCrossRefMathSciNetGoogle Scholar
  18. 38.
    Blondel VD, Nesterov Yu, Theys J. On the accuracy of the ellipsoidal norm approximation of the joint spectral radius. Linear Algebra Appl. 2005;394:91–107. zbMATHCrossRefMathSciNetGoogle Scholar
  19. 39.
    Blondel VD, Theys J, Vladimirov AA. An elementary counterexample to the finiteness conjecture. SIAM J Matrix Anal Appl. 2003;24(4):963–70. zbMATHCrossRefMathSciNetGoogle Scholar
  20. 41.
    Blondel VD, Tsitsiklis JN. A survey of computational complexity results in systems and control. Automatica. 2000;36(9):1249–74. zbMATHCrossRefMathSciNetGoogle Scholar
  21. 45.
    Bousch T, Mairesse J. Asymptotic height optimization for topical IFS, Tetris heaps and the finiteness conjecture. J Am Math Soc. 2002;15(1):77–111. zbMATHCrossRefMathSciNetGoogle Scholar
  22. 47.
    Brayton RK, Tong CH. Stability of dynamic systems: a constructive approach. IEEE Trans Circuits Syst. 1979;26(4):224–34. zbMATHCrossRefMathSciNetGoogle Scholar
  23. 48.
    Brayton RK, Tong CH. Constructive stability and asymptotic stability of dynamic systems. IEEE Trans Circuits Syst. 1980;27(11):1121–30. zbMATHCrossRefMathSciNetGoogle Scholar
  24. 53.
    Cheng DZ, Guo L, Huang J. On quadratic Lyapunov functions. IEEE Trans Autom Control. 2003;48(5):885–90. CrossRefMathSciNetGoogle Scholar
  25. 62.
    Dai XP, Huang Y, Xiao MQ. Criteria of stability for continuous-time switched systems by using Liao-type exponents. SIAM J Control Optim. 2010;48(5):3271–96. zbMATHCrossRefMathSciNetGoogle Scholar
  26. 63.
    Daubechies I, Lagarias JC. Corrigendum/addendum to: sets of matrices all infinite products of which converge. Linear Algebra Appl. 2001;327(1–3):69–83. zbMATHCrossRefMathSciNetGoogle Scholar
  27. 64.
    Dayawansa WP, Martin CF. A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE Trans Autom Control. 1999;44(4):751–60. zbMATHCrossRefMathSciNetGoogle Scholar
  28. 69.
    Elsner L. The generalized spectral-radius theorem: an analytic-geometric proof. Linear Algebra Appl. 1995;220:151–8. zbMATHCrossRefMathSciNetGoogle Scholar
  29. 80.
    Feron E. Quadratic stabilizability of switched systems via state and output feedback. Massachusetts Inst Tech, Tech Rep CICS-P-468; 1996. Google Scholar
  30. 82.
    Filippov AF. Stability for differential equations with discontinuous and many-valued right-hand sides. Differ Uravn (Minsk). 1979;15:1018–27. zbMATHGoogle Scholar
  31. 83.
    Filippov AF. Differential equations with discontinuous right-hand side. Moscow: Nauka; 1985. zbMATHGoogle Scholar
  32. 85.
    Gaines FJ, Thompson RC. Sets of nearly triangular matrices. Duke Math J. 1968;35(3):441–54. zbMATHCrossRefMathSciNetGoogle Scholar
  33. 95.
    Gripenberg G. Computing the joint spectral radius. Linear Algebra Appl. 1996;234:43–60. zbMATHCrossRefMathSciNetGoogle Scholar
  34. 96.
    Guglielmi N, Zennaro M. On the limit products of a family of matrices. Linear Algebra Appl. 2003;362:11–27. zbMATHCrossRefMathSciNetGoogle Scholar
  35. 112.
    Holcman D, Margaliot M. Stability analysis of switched homogeneous systems in the plane. SIAM J Control Optim. 2003;41(5):1609–25. zbMATHCrossRefMathSciNetGoogle Scholar
  36. 117.
    Ingalls B, Sontag ED, Wang Y. An infinite-time relaxation theorem for differential inclusions. Proc Am Math Soc. 2003;131(2):487–99. zbMATHCrossRefMathSciNetGoogle Scholar
  37. 124.
    Jiang ZP, Wang Y. A converse Lyapunov theorem for discrete-time systems with disturbances. Syst Control Lett. 2002;45(1):49–58. zbMATHCrossRefMathSciNetGoogle Scholar
  38. 128.
    John F. Extremum problems with inequalities as subsidiary conditions. In: Studies and essays presented to R. Courant on his 60th birthday. New York: Interscience; 1948. p. 187–204. Google Scholar
  39. 135.
    Krasovskii NN. Stability of motion. Stanford: Stanford Univ Press; 1963. zbMATHGoogle Scholar
  40. 137.
    Laffey TJ. Simultaneous triangularization of matrices—low rank case and the nonderogatory case. Linear Multilinear Algebra. 1978;6(1):269–305. zbMATHCrossRefMathSciNetGoogle Scholar
  41. 138.
    Lagarias JC, Wang Y. The finiteness conjecture for the generalized spectral radius of a set of matrices. Linear Algebra Appl. 1995;214:17–42. zbMATHCrossRefMathSciNetGoogle Scholar
  42. 139.
    Lasota A, Strauss A. Asymptotic behavior for differential equations which cannot be locally linearized. J Differ Equ. 1971;10(1):152–72. zbMATHCrossRefMathSciNetGoogle Scholar
  43. 146.
    Liberzon D. Switching in systems and control. Boston: Birkhäuser; 2003. zbMATHGoogle Scholar
  44. 147.
    Liberzon D, Hespanha JP, Morse AS. Stability of switched systems: a Lie-algebraic condition. Syst Control Lett. 1999;37(3):117–22. zbMATHCrossRefMathSciNetGoogle Scholar
  45. 148.
    Liberzon MR. Essays on the absolute stability theory. Autom Remote Control. 2006;67(10):1610–44. zbMATHCrossRefMathSciNetGoogle Scholar
  46. 149.
    Lin H, Antsaklis PJ. Stability and stabilizability of switched linear systems: a short survey of recent results. In: Proc IEEE ISIC; 2005. p. 24–9. Google Scholar
  47. 152.
    Lin Y, Sontag ED, Wang Y. A smooth converse Lyapunov theorem for robust stability. SIAM J Control Optim. 1996;34(1):124–60. zbMATHCrossRefMathSciNetGoogle Scholar
  48. 156.
    Lur YY. A note on a gap result for norms of semigroups of matrices. Linear Algebra Appl. 2006;419(2–3):368–72. zbMATHCrossRefMathSciNetGoogle Scholar
  49. 157.
    Lur’e AI. Nekotorye nelineinye zadachi teorii avtomaticheskogo regulirovaniya (Some nonlinear problems of the automatic control theory). Moscow: Gostekhizdat; 1951. Google Scholar
  50. 158.
    Maesumi M. An efficient lower bound for the generalized spectral radius of a set of matrices. Linear Algebra Appl. 1996;240:1–7. zbMATHCrossRefMathSciNetGoogle Scholar
  51. 159.
    Mancilla-Aguilar JL, Garcia RA. A converse Lyapunov theorem for nonlinear switched systems. Syst Control Lett. 2000;41(1):67–71. zbMATHCrossRefMathSciNetGoogle Scholar
  52. 163.
    Margaliot M, Langholz G. Necessary and sufficient conditions for absolute stability: the case of second-order systems. IEEE Trans Circuits Syst I, Fundam Theory Appl. 2003;50(2):227–34. CrossRefMathSciNetGoogle Scholar
  53. 164.
    Margaliot M, Liberzon D. Lie-algebraic stability conditions for nonlinear switched systems and differential inclusions. Syst Control Lett. 2006;55(1):8–16. zbMATHCrossRefMathSciNetGoogle Scholar
  54. 168.
    Mason P, Boscain U, Chitour Y. On the minimal degree of a common Lyapunov function for planar switched systems. In: Proc IEEE CDC; 2004. p. 2786–91. Google Scholar
  55. 170.
    Molchanov AP, Pyatnitskiy YeS. Lyapunov functions defining the necessary and sufficient conditions for absolute stability of the nonlinear control systems, I. Avtom Telemeh. 1986;3:63–73. Google Scholar
  56. 171.
    Molchanov AP, Pyatnitskiy YeS. Lyapunov functions defining the necessary and sufficient conditions for absolute stability of the nonlinear control systems, II. Avtom Telemeh. 1986;4:5–15. Google Scholar
  57. 172.
    Molchanov AP, Pyatnitskiy YeS. Lyapunov functions defining the necessary and sufficient conditions for absolute stability of the nonlinear control systems, III. Avtom Telemeh. 1986;5:38–49. Google Scholar
  58. 173.
    Molchanov AP, Pyatnitskiy YeS. Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Syst Control Lett. 1989;13(1):59–64. zbMATHCrossRefMathSciNetGoogle Scholar
  59. 176.
    Mori Y, Mori T, Kuroe Y. A solution to the common Lyapunov function problem for continuous-time systems. In: Proc IEEE CDC; 1997. p. 3530–1. Google Scholar
  60. 182.
    Narendra KS, Balakrishnan J. A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE Trans Autom Control. 1994;39(12):2469–71. zbMATHCrossRefMathSciNetGoogle Scholar
  61. 184.
    Nesterov Y. Squared functional systems and optimization problems, high performance optimization. Appl Optim. 2000;33:405–40. MathSciNetGoogle Scholar
  62. 188.
    Opoiytsev VI. Conversion of principle of contractive maps. Usp Mat Nauk. 1976;31:169–98. Google Scholar
  63. 190.
    Parrilo PA, Jadbabaie A. Approximation of the joint spectral radius using sum of squares. Linear Algebra Appl. 2008;428:2385–402. zbMATHCrossRefMathSciNetGoogle Scholar
  64. 193.
    Protasov Yu. The geometric approach for computing the joint spectral radius. In: Proc IEEE CDC; 2005. p. 3001–6. Google Scholar
  65. 195.
    Radjavi H, Rosenthal P. Simultaneous triangularization. New York: Springer; 1999. Google Scholar
  66. 199.
    Rota GC, Strang X. A note on the joint spectral radius. Indag Math. 1960;22:379–81. MathSciNetGoogle Scholar
  67. 203.
    Shor NZ. Class of global minimum bounds of polynomial functions. Cybernetics. 1987;23(6):731–4. zbMATHCrossRefGoogle Scholar
  68. 204.
    Shorten RN, Narendra KS. On the existence of a common quadratic Lyapunov functions for linear stable switching systems. In: Proc Yale Workshop Adapt Learn Syst; 1998. Google Scholar
  69. 221.
    Sun Z. Guaranteed stability of switched linear systems revisited. In: Proc IEEE ICCA 2007; 2007. p. 18–23. Google Scholar
  70. 223.
    Sun Z. Matrix measure approach for stability of switched linear systems. In: IFAC NOLCOS; 2007. p. 557–60. Google Scholar
  71. 224.
    Sun Z. A note on marginal stability of switched systems. IEEE Trans Autom Control. 2008;53(2):625–31. CrossRefGoogle Scholar
  72. 234.
    Sun Z, Ge SS. Switched linear systems: control and design. London: Springer; 2005. zbMATHGoogle Scholar
  73. 239.
    Sun Z, Shorten RN. On convergence rates of simultaneously triangularizable switched linear systems. IEEE Trans Autom Control. 2005;50(8):1224–8. CrossRefMathSciNetGoogle Scholar
  74. 249.
    Theys J. Joint spectral radius: theory and approximations. PhD dissertation, Dept Math Eng, Univ Louvain; 2005. Google Scholar
  75. 251.
    Tsitsiklis JN, Blondel VD. The Lyapunov exponent and joint spectral radius of pairs of matrices are hard, when not impossible, to compute and to approximate. Math Control Signals Syst. 1997;10(1):31–40. zbMATHCrossRefMathSciNetGoogle Scholar
  76. 252.
    Veres SM. The geometric bounding toolbox, user’s manual & reference. UK: SysBrain; 2001. Google Scholar
  77. 253.
    Vidyasagar M. Nonlinear systems analysis. 2nd ed. Eaglewood Cliffs: Prentice Hall; 1993. zbMATHGoogle Scholar
  78. 255.
    Vladimirov A, Elsner L, Beyn WJ. Stability and paracontractivity of discrete linear inclusions. Linear Algebra Appl. 2000;312(1–3):125–34. zbMATHCrossRefMathSciNetGoogle Scholar
  79. 256.
    Vu L, Liberzon D. Common Lyapunov functions for families of commuting nonlinear systems. Syst Control Lett. 2005;54(5):405–16. zbMATHCrossRefMathSciNetGoogle Scholar
  80. 260.
    Wielandt H. Losung der Aufgabe 338 (When are irreducible components of a semigroup of matrices bounded?). Jahresber Dtsch Math-Ver. 1954;57:4–5. Google Scholar
  81. 271.
    Yakubovich VA, Leonov GA, Gelig AK. Ustoichivost Nelineinykh Sistem s Needinstvennym Sostoyaniem Ravnovesiya (Stability of Nonlinear Systems with Nonunique Equilibrium State). Moscow: Nauka; 1978. Google Scholar
  82. 274.
    Zahreddine Z. Matrix measure and application to stability of matrices and interval dynamical systems. Int J Math Math Sci. 2003;2:75–85. CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.College Automation Science & Engineering, Center for Control and OptimizationSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.Department of Electrical and Computer EngineeringThe National University of SingaporeSingaporeSingapore
  3. 3.Robotics Institue and Institute of Intelligent Systems and Information TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations