Constrained Switching

  • Zhendong SunEmail author
  • Shuzhi Sam Ge
Part of the Communications and Control Engineering book series (CCE)


Chapter 3 presents stability theory for switched dynamical systems under constrained switching. There are three types of constrained switching addressed in this chapter. The first type of constrained switching is the random switching with a preassigned jump distribution. When the subsystems are linear and the switching is governed by a Markov process, the switched linear system is known to be a jump linear system. We introduce various stability concepts and their criteria and establish the connections to the guaranteed stability criteria in Chapter 2. The second is the piecewise affine systems, where the state space is partitioned into a set of polyhedral cells each relating to a subsystem, and hence the switching is totally autonomous. The piecewise quadratic Lyapunov approach, the surface Lyapunov approach, and the transition graph approach are introduced. The pros and cons of the approaches are compared and discussed. The third type of constrained switching is the dwell-time switching, where the switching duration between any two consecutive switches admits a positive lower bound. We address both the stability analysis, where the dwell time is preassigned, and the stabilizing switching design, where the minimum or maximum dwell time is to be designed. The design captures the capability and limitation of the switching mechanism.


Dwell Time Lyapunov Function Global Asymptotic Stability Switching Signal Switching Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 8.
    Angeli D. A note on stability of arbitrarily switched homogeneous systems. Preprint; 1999. Google Scholar
  2. 10.
    Arnold L, Wihstutz V, editors. Lyapunov exponents. New York: Springer; 1986. zbMATHGoogle Scholar
  3. 11.
    Asarin E, Bournez O, Dang T, Maler O. Approximate reachability analysis of piecewise-linear dynamical systems. In: Lynch N, Krogh BH, editors. Hybrid systems: computation and control. Berlin: Springer; 2000. p. 20–31. CrossRefGoogle Scholar
  4. 23.
    Bemporad A, Morari M. Control of systems integrating logic, dynamics, and constraints. Automatica. 1999;35(3):407–27. zbMATHCrossRefMathSciNetGoogle Scholar
  5. 27.
    Bharucha BH. On the stability of randomly varying systems. PhD dissertation, Dept Elec Eng, Univ Calif Berkeley; 1961. Google Scholar
  6. 29.
    Biswas P, Grieder P, Lofberg J, Morari M. A survey on stability analysis of discrete-time piecewise affine systems. In: Proc IFAC World Congress, Prague, Czech Republic; 2005. Google Scholar
  7. 40.
    Blondel VD, Tsitsiklis JN. Complexity of stability and controllability of elementary hybrid systems. Automatica. 1999;35(3):479–89. zbMATHCrossRefMathSciNetGoogle Scholar
  8. 42.
    Bolzern P, Colaneria P, De Nicolaob G. On almost sure stability of continuous-time Markov jump linear systems. Automatica. 2006;42(6):983–8. zbMATHCrossRefMathSciNetGoogle Scholar
  9. 43.
    Bolzern P, Colaneria P, De Nicolaob G. Markov jump linear systems with switching transition rates: mean square stability with dwell-time. Automatica. 2010;46(6):1081–8. zbMATHCrossRefGoogle Scholar
  10. 46.
    Boyd S, El Ghaoui L, Feron E, Balakrishnan V. Linear matrix inequalities in systems and control theory. Philadelphia: SIAM; 1994. Google Scholar
  11. 49.
    Camlibel MK, Heemels WPMH, Schumacher JM. Algebraic necessary and sufficient conditions for the controllability of conewise linear systems. IEEE Trans Autom Control. 2008;53(3):762–74. CrossRefMathSciNetGoogle Scholar
  12. 50.
    Camlibel MK, Pang JS, Shen J. Conewise linear systems: non-Zenoness and observability. SIAM J Control Optim. 2006;45(5):1769–800. zbMATHCrossRefMathSciNetGoogle Scholar
  13. 56.
    Chesi G, Colaneri P, Geromel JC, Middleton R, Shorten R. On the minimum dwell time for linear switching systems. In: Proc ACC; 2010. p. 2487–92. Google Scholar
  14. 57.
    Chesi G, Garulli A, Tesi A, Vicino A. Homogeneous polynomial forms for robustness analysis of uncertain systems. Berlin: Springer; 2009. zbMATHCrossRefGoogle Scholar
  15. 59.
    Costa OLV, Fragoso MD, Marquez RP. Discrete-time Markov jump linear systems. London: Springer; 2005. zbMATHGoogle Scholar
  16. 61.
    Dai XP, Huang Y, Xiao MQ. Almost sure stability of discrete-time switched linear systems: a topological point of view. SIAM J Control Optim. 2008;47(4):2137–56. zbMATHCrossRefMathSciNetGoogle Scholar
  17. 70.
    Fang Y. Stability analysis of linear control systems with uncertain parameters. PhD dissertation, Dept Syst Contr Ind Eng, Case Western Reserve Univ; 1994. Google Scholar
  18. 71.
    Fang Y. A new general sufficient condition for almost sure stability of jump linear systems. IEEE Trans Autom Control. 1997;42:378–82. zbMATHCrossRefGoogle Scholar
  19. 72.
    Fang Y, Loparo KA. Stochastic stability of jump linear systems. IEEE Trans Autom Control. 2002;47(7):1204–8. CrossRefMathSciNetGoogle Scholar
  20. 73.
    Fang Y, Loparo KA. On the relationship between the sample path and moment Lyapunov exponents for jump linear systems. IEEE Trans Autom Control. 2002;47(9):1556–60. CrossRefMathSciNetGoogle Scholar
  21. 74.
    Fang Y, Loparo KA. Stabilization of continuous-time jump linear systems. IEEE Trans Autom Control. 2002;47(10):1590–603. CrossRefMathSciNetGoogle Scholar
  22. 76.
    Feng G. Stability analysis of discrete time fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Trans Fuzzy Syst. 2004;12(1):22–8. CrossRefGoogle Scholar
  23. 79.
    Feng X, Loparo KA, Ji Y, Chizeck HJ. Stochastic stability properties of jump linear systems. IEEE Trans Autom Control. 1992;37(1):38–53. zbMATHCrossRefMathSciNetGoogle Scholar
  24. 90.
    Goebel R, Sanfelice RG, Teel AR. Invariance principles for switching systems via hybrid systems techniques. Syst Control Lett. 2008;57(12):980–6. zbMATHCrossRefMathSciNetGoogle Scholar
  25. 92.
    Goncalves JM, Megretski A, Dahleh A. Global stability of relay feedback systems. IEEE Trans Autom Control. 2001;46(4):550–62. zbMATHCrossRefMathSciNetGoogle Scholar
  26. 93.
    Goncalves JM, Megretski A, Dahleh A. Global analysis of piecewise linear systems using impact maps and surface Lyapunov functions. IEEE Trans Autom Control. 2003;48(12):2089–106. CrossRefMathSciNetGoogle Scholar
  27. 94.
    Griggs WM, King CK, Shorten RN, Mason O, Wulff K. Quadratic Lyapunov functions for systems with state-dependent switching. Linear Algebra Appl. 2010;433(1):52–63. zbMATHCrossRefMathSciNetGoogle Scholar
  28. 99.
    Han TT, Ge SS, Lee TH. Persistent dwell-time switched nonlinear systems: variation paradigm and gauge design. IEEE Trans Autom Control. 2010;55(2):321–37. MathSciNetGoogle Scholar
  29. 100.
    Hedlund S, Johansson M. PWLTOOL: a MATLAB toolbox for analysis of piecewise linear systems. Dept Automat Contr, Lund Inst Tech; 1999. Google Scholar
  30. 101.
    Heemels WP, Brogliato B. The complementarity class of hybrid dynamical systems. Eur J Control. 2003;9(2–3):322–60. CrossRefGoogle Scholar
  31. 102.
    Heemels WP, De Schutter B, Bemporad A. Equivalence of hybrid dynamical models. Automatica. 2001;37(7):1085–91. zbMATHCrossRefGoogle Scholar
  32. 103.
    Hegselmann R, Krause U. Opinion dynamics and bounded confidence: models, analysis, and simulation. J Artif Soc Soc Simul. 2002;5(3):2–34. Google Scholar
  33. 110.
    Hespanha JP, Morse AS. Stability of switched systems with average dwell-time. In: Proc IEEE CDC; 1999. p. 2655–60. Google Scholar
  34. 116.
    Imura J. Well-posedness analysis of switch-driven piecewise affine systems. IEEE Trans Autom Control. 2003;48(11):1926–35. CrossRefMathSciNetGoogle Scholar
  35. 119.
    Iwatania Y, Hara S. Stability tests and stabilization for piecewise linear systems based on poles and zeros of subsystems. Automatica. 2006;42(10):1685–95. CrossRefMathSciNetGoogle Scholar
  36. 125.
    Johansson M. Piecewise linear control systems. New York: Springer; 2003. zbMATHGoogle Scholar
  37. 126.
    Johansson M, Rantzer A. Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans Autom Control. 1998;43:555–9. zbMATHCrossRefMathSciNetGoogle Scholar
  38. 131.
    Khas’minskii RZ. Necessary and sufficient condition for the asymptotic stability of linear stochastic systems. Theory Probab Appl. 1967;12(1):144–7. CrossRefMathSciNetGoogle Scholar
  39. 133.
    Kozin F. On relations between moment properties and almost sure Lyapunov stability for linear stochastic systems. J Math Anal Appl. 1965;10:324–53. CrossRefMathSciNetGoogle Scholar
  40. 134.
    Kozin F. A survey of stability of stochastic systems. Automatica. 1969;5(1):95–112. zbMATHCrossRefMathSciNetGoogle Scholar
  41. 136.
    Kushner HJ. Stochastic stability and control. New York: Academic Press; 1967. zbMATHGoogle Scholar
  42. 140.
    Lee JW, Dullerud GE. Uniform stabilization of discrete-time switched and Markovian jump linear systems. Automatica. 2006;42(2):205–18. zbMATHCrossRefMathSciNetGoogle Scholar
  43. 143.
    Leenaerts DMW. On linear dynamic complementary systems. IEEE Trans Circuits Syst I, Fundam Theory Appl. 1999;46(8):1022–6. zbMATHCrossRefGoogle Scholar
  44. 144.
    Li ZG, Soh YC, Wen CY. Sufficient conditions for almost sure stability of jump linear systems. IEEE Trans Autom Control. 2000;45(7):1325–9. zbMATHCrossRefMathSciNetGoogle Scholar
  45. 160.
    Marcelo D, Fragoso MD, Costa OLV. A unified approach for stochastic and mean square stability of continuous-time linear systems with Markovian jumping parameters and additive disturbances. SIAM J Control Optim. 2005;44(4):1165–91. zbMATHCrossRefMathSciNetGoogle Scholar
  46. 166.
    Mariton M. Almost sure and moment stability of jump linear systems. Syst Control Lett. 1988;11(5):393–7. zbMATHCrossRefMathSciNetGoogle Scholar
  47. 167.
    Mariton M. Jump linear systems in automatic control. New York: Marcel Dekker; 1990. Google Scholar
  48. 174.
    Morari M, Baotic M, Borrelli F. Hybrid systems modeling and control. Eur J Control. 2003;9(2–3):177–89. Google Scholar
  49. 178.
    Morse AS. Supervisory control of families of linear set-point controllers, part 1: Exact matching. IEEE Trans Autom Control. 1996;41(10):1413–31. zbMATHCrossRefMathSciNetGoogle Scholar
  50. 189.
    Opoiytsev VI. A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans Mosc Math Soc. 1968;19:197–231. Google Scholar
  51. 197.
    Riedinger P, Sigalotti M, Daafouz J. On the algebraic characterization of invariant sets of switched linear systems. Automatica. 2010;46(6):1047–52. zbMATHCrossRefGoogle Scholar
  52. 202.
    Shen JL. Observability analysis of conewise linear systems via directional derivative and positive invariance techniques. Automatica. 2010;46(5):843–51. zbMATHCrossRefGoogle Scholar
  53. 205.
    Shorten RN, Narendra KS. Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for two stable second order linear time-invariant systems. In: Proc ACC; 1999. p. 1410–4. Google Scholar
  54. 210.
    Sontag ED. Nonlinear regulation: the piecewise linear approach. IEEE Trans Autom Control. 1981;26(2):346–58. zbMATHCrossRefMathSciNetGoogle Scholar
  55. 212.
    Sontag ED. Interconnected automata and linear systems: a theoretical framework in discrete-time. In: Alur R, Henzinger TA, Sontag ED, editors. Hybrid systems III—Verification and control. Berlin: Springer; 1996. p. 436–48. Google Scholar
  56. 216.
    Sun Z. Stabilizability and insensitiveness of switched systems. IEEE Trans Autom Control. 2004;49(7):1133–7. CrossRefGoogle Scholar
  57. 226.
    Sun Z. A graphic approach for stability of piecewise linear systems. In: Proc Chinese conf dec contr; 2009. p. 1016–9. Google Scholar
  58. 227.
    Sun Z. The problem of slow switching for switched linear systems. In: Proc ICCAS-SICE; 2009. p. 4843–6. Google Scholar
  59. 229.
    Sun Z. Stability and contractivity of conewise linear systems. In: Proc IEEE MSC; 2010. p. 2094–8. Google Scholar
  60. 230.
    Sun Z. Stability of piecewise linear systems revisited. Annu Rev Control. 2010;34(2):221–31. CrossRefGoogle Scholar
  61. 234.
    Sun Z, Ge SS. Switched linear systems: control and design. London: Springer; 2005. zbMATHGoogle Scholar
  62. 239.
    Sun Z, Shorten RN. On convergence rates of simultaneously triangularizable switched linear systems. IEEE Trans Autom Control. 2005;50(8):1224–8. CrossRefMathSciNetGoogle Scholar
  63. 251.
    Tsitsiklis JN, Blondel VD. The Lyapunov exponent and joint spectral radius of pairs of matrices are hard, when not impossible, to compute and to approximate. Math Control Signals Syst. 1997;10(1):31–40. zbMATHCrossRefMathSciNetGoogle Scholar
  64. 252.
    Veres SM. The geometric bounding toolbox, user’s manual & reference. UK: SysBrain; 2001. Google Scholar
  65. 261.
    Wirth F. A converse Lyapunov theorem for linear parameter-varying and linear switching systems. SIAM J Control Optim. 2005;44(1):210–39. zbMATHCrossRefMathSciNetGoogle Scholar
  66. 265.
    Xia X. Well-posedness of piecewise-linear systems with multiple modes and multiple criteria. IEEE Trans Autom Control. 2002;47(10):1716–20. CrossRefGoogle Scholar
  67. 278.
    Zhang LX, Gao HJ. Asynchronously switched control of switched linear systems with average dwell time. Automatica. 2010;46(5):953–8. zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.College Automation Science & Engineering, Center for Control and OptimizationSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.Department of Electrical and Computer EngineeringThe National University of SingaporeSingaporeSingapore
  3. 3.Robotics Institue and Institute of Intelligent Systems and Information TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations