General Entropies

  • Jan NaudtsEmail author


It is shown that the probability distributions of a generalised exponential family still satisfy a maximum entropy principle and a variational principle. A definition is given of a deformed Fisher information and a version of the Cramer-Rao theorem is proved.


Variational Principle General Entropy Fisher Information Relative Entropy Exponential Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe, S.: q-deformed entropies and Fisher metrics. In: P. Kasperkovitz, D. Grau (eds.) Proceedings of The 5th International Wigner Symposium, August 25–29, 1997, Vienna, Austria, p. 66. World Scientific, Singapore (1998) Google Scholar
  2. 2.
    Abe, S.: Geometry of escort distributions. Phys. Rev. E 68, 031101 (2003) CrossRefGoogle Scholar
  3. 3.
    Amari, S.: Differential-geometrical methods in statistics, Lecture Notes in Statistics, vol. 28. Springer, New York, Berlin (1985) zbMATHGoogle Scholar
  4. 4.
    Borges, E., Roditi, I.: A family of nonextensive entropies. Phys. Lett. A 246, 399–402 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chavanis, P.H.: Generalized thermodynamics and Fokker-Planck equations: Applications to stellar dynamics and two-dimensional turbulence. Phys. Rev. E 68, 036108 (2003) CrossRefGoogle Scholar
  6. 6.
    Harremoës, P., Topsøe, F.: Maximum entropy fundamentals. Entropy 3, 191–226 (2001) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Kaniadakis, G., Scarfone, A.: A new one parameter deformation of the exponential function. Physica A 305, 69–75 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Naudts, J.: Estimators, escort probabilities, and phi-exponential families in statistical physics. J. Ineq. Pure Appl. Math. 5, 102 (2004) MathSciNetGoogle Scholar
  9. 9.
    Naudts, J.: Escort operators and generalized quantum information measures. Open Systems and Information Dynamics 12, 13–22 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Naudts, J.: Continuity of a class of entropies and relative entropies. Rev. Math. Phys. 16, 809–822 (2004); Errata. Rev. Math. Phys. 21, 947–948 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ohara, A., Matsuzoe, H., Amari, S.: A dually flat structure on the space of escort distributions. J. Phys.: Conf. Ser. 201, 012012 (2010) CrossRefGoogle Scholar
  12. 12.
    Pennini, F., Plastino, A., Plastino, A.: Rényi entropies and Fisher informations as measures of nonextensivity in a Tsallis setting. Physica 258, 446–457 (1998) CrossRefGoogle Scholar
  13. 13.
    Ruelle, D.: Statistical mechanics, Rigorous results. W.A. Benjamin, Inc., New York (1969) zbMATHGoogle Scholar
  14. 14.
    Thirring, W.: Lehrbuch der Mathematischen Physik, Vol. 4. Springer-Verlag, Wien (1980) Google Scholar
  15. 15.
    Topsøe, F.: Entropy and equilibrium via games of complexity. Physica A 340, 11–31 (2004) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of AntwerpAntwerpBelgium

Personalised recommendations