The Mean Field Approximation

  • Jan NaudtsEmail author


The use of product measures as a way of doing mean field theory is known since long. Here, this approach is situated in the context of hyperensembles. Doing so allows for a further generalisation of the mean field approximation. This Chapter discusses also the occurrence of phase transitions in mean field models and the implication that these models do not belong to the exponential family.


Ising Model Phase Transition Temperature Field Approximation Exponential Family Counting Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balslev, E., Verbeure, A.: States on Clifford algebras. Commun. Math. Phys. 7, 55–76 (1968) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bratteli, O., Robinson, D.: Operator Algebras and Quantum Statistical Mechanics. Vol I, II. 2nd edition. Springer, New York, Berlin (1997) Google Scholar
  3. 3.
    Kramers, H., Wannier, G.: Statistics of the two-dimensional ferromagnet. Part I, II. Phys. Rev. 60, 252–276 (1941) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Manuceau, J., Verbeure, A.: Quasi-free states of the CCR-algebra and Bogoliubov transformations. Commun. Math. Phys. 9, 293–302 (1968) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Naudts, J., Van der Straeten, E.: Transition records of stationary Markov chains. Phys. Rev. E 74, 040103(R) (2006) CrossRefGoogle Scholar
  6. 6.
    Onsager, L.: Crystal statistics, I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Petz, D.: An invitation to the algebra of canonical commutation relations. Leuven University Press, Leuven (1990) zbMATHGoogle Scholar
  8. 8.
    Robinson, D.: The ground state of the Bose gas. Commun. Math. Phys. 1, 159–174 (1965) CrossRefGoogle Scholar
  9. 9.
    Stanley, H.: Phase Transitions and Critical Phenomena. Harper & Row (1971) Google Scholar
  10. 10.
    Thompson, C.: Mathematical Statistical Mechanics. McMillan, New York (1972) zbMATHGoogle Scholar
  11. 11.
    Van der Straeten, E., Naudts, J.: A one-dimensional model for theoretical analysis of single molecule experiments. J. Phys. A: Math. Gen. pp. 5715–5726 (2006) Google Scholar
  12. 12.
    Van der Straeten, E., Naudts, J.: A two-parameter random walk with approximate exponential probability distribution. J. Phys. A: Math. Gen. 39, 7245–7256 (2006) zbMATHCrossRefGoogle Scholar
  13. 13.
    Van der Straeten, E., Naudts, J.: Residual entropy in a model for the unfolding of single polymer chains. Europhys. Lett. 81, 28007 (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of AntwerpAntwerpBelgium

Personalised recommendations