q-Deformed Distributions

  • Jan NaudtsEmail author


The q-deformed exponential and logarithmic functions are introduced. Their properties are studied. They form the basis to define the q-exponential families. The notion of escort probability distributions is explained. The q-Gaussian and the q-Maxwellian are given as examples. The relevance of the q-deformed exponential family for closed systems of classical mechanics is demonstrated.


Logarithmic Function Exponential Family Multiplicative Noise Dual Exponential Function Average Kinetic Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aldaya, V., Bisquert, J., Guerrero, J., Navarro-Salas, J.: Group theoretic construction of the quantum relativistic harmonic oscillator. Rep. Math. Phys. 37, 387–418 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Anteneodo, C., Tsallis, C.: Multiplicative noise: A mechanism leading to nonextensive statistical mechanics. J. Math. Phys. 44, 5194 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Beck, C., Schlögl, F.: Thermodynamics of chaotic systems: an introduction. Cambridge University Press (1997) Google Scholar
  4. 4.
    David, H.A., Nagaraja, H.: Order statistics. Wiley (2003) zbMATHCrossRefGoogle Scholar
  5. 5.
    Meyer-Vernet, N., Moncuquet, M., Hoang, S.: Temperature inversion in the Ioplasma torus. Icarus 116, 202–213 (1995) CrossRefGoogle Scholar
  6. 6.
    Naudts, J.: Deformed exponentials and logarithms in generalized thermostatistics. Physica A 316, 323–334 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Naudts, J.: Estimators, escort probabilities, and phi-exponential families in statistical physics. J. Ineq. Pure Appl. Math. 5, 102 (2004) MathSciNetGoogle Scholar
  8. 8.
    Naudts, J., Baeten, M.: Non-extensivity of the configurational density distribution in the classical microcanonical ensemble. Entropy 11, 285–294 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Tsallis, C.: What are the numbers that experiments provide? Quimica Nova 17, 468 (1994) Google Scholar
  10. 10.
    Tsallis, C., Mendes, R., Plastino, A.: The role of constraints within generalized nonextensive statistics. Physica A 261, 543–554 (1998) CrossRefGoogle Scholar
  11. 11.
    Vignat, C., Lamberti, P.: A study of the orthogonal polynomials associated with the quantum harmonic oscillator on constant curvature spaces. J. Math. Phys. 50, 103514 (2009) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Vignat, C., Plastino, A.: The p-sphere and the geometric substratum of power-law probability distributions. Phys. Lett. A 343, 411–416 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Wilk, G., Włodarczyk, Z.: Tsallis distribution from minimally selected order statistics. In: S. Abe, H. Herrmann, P. Quarati, A. Rapisarda, C. Tsallis (eds.) Complexity, metastability and nonextensivity, AIP Conference Proceedings, vol. 965, pp. 76–79. American Institute of Physics (2007) Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of AntwerpAntwerpBelgium

Personalised recommendations