Advertisement

Introduction

  • Zvi AradEmail author
  • Xu Bangteng
  • Guiyun Chen
  • Effi Cohen
  • Arisha Haj Ihia Hussam
  • Mikhail Muzychuk
Chapter
  • 566 Downloads
Part of the Algebra and Applications book series (AA, volume 16)

Abstract

Arad and Chen proved that a Normalized Integral Table Algebra (fusion ring) (A,B) generated by a non-real faithful element b 3B of degree three the non-identity elements of which have minimal degree 3 satisfies the condition \(b_{3} \bar{b}_{3} = 1 + b_{8}\) where b 8B is an element of degree 8. They also showed that the general case naturally splits into four main sub-cases:
  1. (1)

    (A,B)≅ x (CH(PSL(2,7),Irr(PSL(2,7)));

     
  2. (2)

    \(b_{3}^{2} = b_{4} + b_{5}\) where b 4,b 5B are elements of degrees 4 and 5;

     
  3. (3)

    \(b_{3}^{2} = \bar{b}_{3} + b_{6}\) where b 6B is a non-real element of degree 6;

     
  4. (4)

    \(b_{3}^{2} = c_{3} + b_{6}\) where c 3,b 6B are elements of degrees 3 and 6, \(c_{3}\neq b_{3},\bar{b}_{3}\).

     
The cases (1), (3) and (4) are considered in Chap.  2 of the book. Chapter  3 deals with the case (2). Chapters  4 and  5 analize the most complicated case—the third one. We developed new original methods for enumerating NITAs in the title. Using the developed technique we settled the above cases almost completely. The results obtained in the book and methods developed there will be of interest in the representation theory of finite groups, fusion rules algebras and association schemes.

References

  1. [A]
    Arad, Z.: Homogeneous integral table algebras of degrees two, three and four with a faithful element. In: Group St. Andrews 1997 in Bath, I. London Math. Soc. Lecture Notes Series, vol. 260, pp. 20–29 (1999) Google Scholar
  2. [AAFM]
    Arad, Z., Arisha, H., Fisman, E., Muzychuk, M.: Integral standard table algebras with a faithful nonreal element of degree 3. J. Algebra 231(2), 473–483 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  3. [AB]
    Arad, Z., Blau, H.I.: On table algebras and applications to finite group theory. J. Algebra 138, 137–185 (1991) MathSciNetCrossRefzbMATHGoogle Scholar
  4. [ABFMMX]
    Arad, Z., Blau, H.I., Fisman, E., Miloslavsky, V., Muzychuk, M., Xu, B.: Homogeneous Integral Table Algebra of Degree Three, A Trilogy, Memoirs of the AMS, vol. 144 (2000), no. 684 Google Scholar
  5. [AC]
    Arad, Z., Chen, G.: On normalized table algebras generated by a faithful non-real element of degree 3. In: Shum, K.P. (ed.) Advances in Algebra, Proc. of the ICN Satellite Conf. in Algebra and Related Topics, pp. 13–37. World Scientific, Singapore (Dec. 2003) CrossRefGoogle Scholar
  6. [AC1]
    Arad, Z., Chen, G.: On four normalized table algebras generated by a faithful nonreal element of degree 3. J. Algebra 283, 457–484 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
  7. [AEM]
    Arad, Z., Erez, Y., Muzychuk, M.: On homegeneous standard integral table algebras of degree 4. Comm. Algebra 34, 463–519 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  8. [AH1]
    Arad, Z., Herzog, M. (eds.): Survey on Products of Conjugacy Classes in Groups. Mathematical Lecture Notes Series, vol. 2, pp. 2.01–2.04 (1984) Google Scholar
  9. [AH2]
    Arad, Z., Herzog, M. (eds.): Products of Conjugacy Classes in Groups. LNM, vol. 1112. Springer Verlag, Berlin (1985) zbMATHGoogle Scholar
  10. [AM]
    Arad, Z., Muzychuk, M. (eds.): Standard Integral Table Algebras Generated by a Non-real Element of Small Degree. Lecture Notes in Mathematics (2002) zbMATHGoogle Scholar
  11. [B]
    Blau, H.I.: Homogenous integral table algebras of degree two. Algebra Colloq. 4(4), 393–408 (1997) MathSciNetzbMATHGoogle Scholar
  12. [B1]
    Blau, H.I.: Integral table algebras and Bose-Mesner algebras with a faithful nonreal element of degree 3. J. Algebra 231(2), 484–545 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  13. [B2]
    Blau, H.I.: Table algebras. Eur. J. Comb. 30, 1426–1455 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  14. [BC]
    Blau, H.I., Chillag, D.: On powers of characters and powers of conjugacy classes of a finite group. Proc. Am. Math. Soc. 298, 7–10 (1986) MathSciNetCrossRefGoogle Scholar
  15. [FK]
    Fröhlich, J., Kerler, T.: Quantum Groups, Quantom Categories and Quantum Field Theory, Lecture Notes in Mathematics, vol. 1542 (1993) Google Scholar
  16. [H]
    Hoheisel, G.: Uber Charaktere. Monatsch. f. Math. Phys. 48, 448–456 (1939) MathSciNetCrossRefGoogle Scholar
  17. [K]
    Kawada, Y.: Uber den Dualitatssatz der Charaktere nichtcommutativer Gruppen. Proc. Phys. Math. Soc. Jpn. 24(3), 97–109 (1942) Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Zvi Arad
    • 1
    • 2
    Email author
  • Xu Bangteng
    • 3
  • Guiyun Chen
    • 4
  • Effi Cohen
    • 1
  • Arisha Haj Ihia Hussam
    • 5
  • Mikhail Muzychuk
    • 6
  1. 1.Department of MathematicsBar Ilan UniversityRamat GanIsrael
  2. 2.Netanya Academic CollegeNetanyaIsrael
  3. 3.Department of Mathematics and StatisticsEastern Kentucky UniversityRichmondUSA
  4. 4.Department of MathematicsSouthwest UniversityChongqingPeople’s Republic of China
  5. 5.Department of MathematicsAlqasemi Academic College of EducationBaqa El-GharbiehIsrael
  6. 6.Netanya Academic CollegeNetanyaIsrael

Personalised recommendations