Splitting of the Main Problem into Four Sub-cases

  • Zvi AradEmail author
  • Xu Bangteng
  • Guiyun Chen
  • Effi Cohen
  • Arisha Haj Ihia Hussam
  • Mikhail Muzychuk
Part of the Algebra and Applications book series (AA, volume 16)


In this chapter we collect all necessary definitions and basic facts about Normalized Integral Table Algebras. In this chapter the case (4) is settled provided that the number of constituents in b 3 b 8 is not four. It is shown that under this assumption there are only two NITAs of dimensions 22 and 32. None of them is induced from a group. The case when the number of constituents in b 3 b 8 is four is still open. It is also shown that in the case (3) b 3 b 8 contains exactly three constituents of degrees 6, 10, and 15. It is proved that if the constituent of degree 10 is real, then (A,B)≅ x (CH(PSL(2,7),Irr(PSL(2,7))).


  1. [AB]
    Arad, Z., Blau, H.: On table algebras and application to finite group theory. J. Algebra 138, 137–185 (1991) MathSciNetCrossRefzbMATHGoogle Scholar
  2. [B]
    Blau, H.I.: Integral table algebra, affine diagrams, and the analysis of degree two. J. Algebra 178, 872–918 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  3. [B1]
    Blau, H.I.: Quotient structures in C-algebra. J. Algebra 177, 297–337 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  4. [Bl]
    Blichfeldt, H.F.: Finite Collineation Groups. University of Chicago Press, Chicago (1917) Google Scholar
  5. [Br]
    Brauer, R.: Über endliche lineare Gruppen von Primzahlgrad. Math. Ann. 169, 73–96 (1967) MathSciNetCrossRefzbMATHGoogle Scholar
  6. [CA]
    Chen, G.Y., Arad, Z.: On four normalized table algebras generated by a faithful nonreal element of degree 3. J. Algebra 283, 457–484 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
  7. [F]
    Feit, W.: The current situation in the theory of finite simple groups, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, pp. 55–93. Gauthier-Villars, Paris (1971) Google Scholar
  8. [L]
    Lindsey, J.H.: On a projective representation of Hall-Janko group. Bull. Am. Math. Soc. 74, 1094 (1968) MathSciNetCrossRefzbMATHGoogle Scholar
  9. [W]
    Wales, D.B.: Finite linear groups of degree seven I. Can. J. Math. 21, 1025–1041 (1969) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Zvi Arad
    • 1
    • 2
    Email author
  • Xu Bangteng
    • 3
  • Guiyun Chen
    • 4
  • Effi Cohen
    • 1
  • Arisha Haj Ihia Hussam
    • 5
  • Mikhail Muzychuk
    • 6
  1. 1.Department of MathematicsBar Ilan UniversityRamat GanIsrael
  2. 2.Netanya Academic CollegeNetanyaIsrael
  3. 3.Department of Mathematics and StatisticsEastern Kentucky UniversityRichmondUSA
  4. 4.Department of MathematicsSouthwest UniversityChongqingPeople’s Republic of China
  5. 5.Department of MathematicsAlqasemi Academic College of EducationBaqa El-GharbiehIsrael
  6. 6.Netanya Academic CollegeNetanyaIsrael

Personalised recommendations