Video and Opto-Digital Imaging Microscopy

  • David M. Shotton
Part of the Topics in Molecular and Structural Biology book series (TMSB)


The major inherent advantage of the light microscope (LM) over the electron microscope (EM), namely its utility for the study of dynamic processes in living cells, has until recently been severely compromised by its inability to image very weak fluorescent signals or to make visible minute cellular structures with the contrast generation methods available for unstained cytoplasm. One consequence of this has been the dominance of electron microscopic investigations of fixed cells and tissues during the postwar development of cell biology. However, within the last few years the combination of novel optical microscopic techniques with advanced video and digital image processing technology has resulted in dramatic improvements in the quality of light microscopic images, leading to a true renaissance in the use of light microscopy for the imaging of both fixed and living biological specimens.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agard, D.A. (1984). Optical sectioning microscopy: cellular architecture in three dimensions. Ann. Rev. Biophys. Bioeng., 13, 191–219CrossRefGoogle Scholar
  2. Agard, D.A., Hiraoka, Y., Shaw, P.J. and Sedat, J.W. (1989). Fluorescence microscopy in three dimensions. In Taylor, D.L. and Wang, Y.L. (Eds), Fluorescence Microscopy of Living Ceils in Culture: B. Quantitative Fluorescence Microscopy—Imaging and Spectroscopy. Academic Press, New York, pp. 353–377Google Scholar
  3. Agard, D.A. and Sedat, J.W. (1983). Three-dimensional architecture of a polytene nucleus. Nature, 302, 676–681CrossRefPubMedGoogle Scholar
  4. Agard, D.A. and Stroud, R.M. (1982). Linking regions in bacteriorhodopsin revealed. Biophys. J., 37, 589–602Google Scholar
  5. Allen, R.D. (1985). New observations on cell architecture and dynamics by video-enhanced contrast optical microscopy. Ann. Rev. Biophys. Biophys. Chem., 14, 265–290CrossRefGoogle Scholar
  6. Allen, R.D. and Allen, N.S. (1983). Video-enhanced microscopy with a computer frame memory. J. Microsc., 129, 3–17CrossRefPubMedGoogle Scholar
  7. Allen, R.D., Allen, N.B. and Travis, J.L. (1981a). Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule -related motility in the reticulopodial network of Allogromia laticollaris. Cell Motil., 1, 291–302Google Scholar
  8. Allen, R.D., David, G.B. and Nomarski, G. (1969). The Zeiss-Nomarski differential interference equipment for transmitted light microscopy. Ztsch. Wiss. Mikrosk. Mikro. Tech., 69, 193–221Google Scholar
  9. Allen, R.D., Metuzals, J., Tasaki, I., Brady, S.T. and Gilbert, S.P. (1982). Fast axonal transport in squid giant axon. Science, N.Y., 218, 1127–1129CrossRefGoogle Scholar
  10. Allen, R.D., Travis, J.L., Allen, S.S. and Yilmaz, H. (1981b). Video-enhanced contrast polarization (AVEC-POL) microscopy: A new method applied to the detection of birefringence in the motile reticulopodial network of Allogromia laticollaris. Cell Motil., 1, 275– 289Google Scholar
  11. Allen, R.D., Weiss, D.G., Hayden, J.H., Brown, D.T., Fujiwake, H. and Simpson, M. (1985). Gliding movement of and bidirectional transport along single native micro tubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport. J. Cell Biol., 100, 1736–1752CrossRefPubMedGoogle Scholar
  12. Allen, T.D. (1987). Time lapse video microscopy using an animation control unit. J. Microsc., 147, 129–135Google Scholar
  13. Amato, P.A., Unanué, E.R. and Taylor, D.L. (1983). Distribution of actin in spreading macrophages: A comparative study on living and fixed cells. J. Cell Biol., 96, 750–761PubMedCentralCrossRefPubMedGoogle Scholar
  14. Amos, L.A. (1987). Kinesin from pig brain studied by electron microscopy. J. Cell Sei., 87, 105— 111Google Scholar
  15. Arndt-Jovin, D.J., Robert-Nicoud, M., Kaufman, S.J. and Jovin, T.M. (1985). Fluorescence digital imaging microscopy in cell biology. Science, N.Y., 230, 247–256CrossRefGoogle Scholar
  16. Baxes, G.R. (1984). Digital Image Processing: A Practical Primer. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  17. Bennett, H.S. (1950). The microscopic investigation of biological materials with polarized light.Google Scholar
  18. In Jones, R.M. (Ed.), McClung’s Handbook of Microscopical Techniques, 3rd edn. Hafner, New York, pp. 591–677Google Scholar
  19. Beesley, J. (1985). Colloidal gold: a new revolution in marking cytochemistry. Proc. R. Microsc. Soc, 20, 187–196, 255–256Google Scholar
  20. Boyde, A. (1987). Colour-coded stereo images from the tandem scanning reflected light microscope (TSRLM). J. Microsc, 146, 137–142CrossRefPubMedGoogle Scholar
  21. Brady, S.T., Lasek, R.J. and Allen, R.D. (1982). Fast axonal transport in extruded axoplasm from squid giant axon. Science, N.Y., 218, 1129–1131CrossRefGoogle Scholar
  22. Brady, S.T., Lasek, R.J. and Allen, R.D. (1985). Video microscopy of fast axonal transport in extruded axoplasm: a new model for study of molecular mechanisms. Cell Motil, 5, 81–101CrossRefPubMedGoogle Scholar
  23. Bright, G.R., Fisher, G.W., Rogowska, J. and Taylor, D.L. (1987). Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH. J. Cell Biol., 104, 1019– 1033Google Scholar
  24. Carazo, J.M. and Carrascosa, J.L. (1987a). Information recovery in missing angular data cases: an approach by the convex projection method in three-dimensions. J. Microscopy, 145, 23–43CrossRefGoogle Scholar
  25. Carazo, J.M. and Carrascosa, J.L. (1987b). Restoration of direct Fourier three-dimensional reconstructions of crystalline specimens by the method of convex projections. J. Microscopy, 145, 159–177.Google Scholar
  26. Carrington, W. and Fogarty, K.E. (1987). 3D molecular distribution in living cells by deconvolution of optical sections using light microscopy. In Foster, K.R. (Ed.), Proc. 13th Ann. Northeast Bioeng. Conf. (IEEE), pp. 1–7Google Scholar
  27. Castleman, K.R. (1979). Digital Image Processing. Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  28. Curtis, A.S.G. (1964). The mechanism of adhesion of cells to glass. A study by interference reflection microscopy. J. Cell Biol, 20, 199–215Google Scholar
  29. DeBiasio, R., Bright, G.R., Ernst, L.A., Waggoner, A.S. and Taylor, D.L. (1987). Fiveparameter fluorescence imaging: wound healing of living Swiss 3T3 cells. J. Cell Biol., 105, 1613–1622CrossRefPubMedGoogle Scholar
  30. De Brabander, M., Geuens, G., Nuydens, R., Moeremans, M. and De Mey, J. (1985). Probing microtubule-dependent intracellular motility with nanometer particle video ultramicroscopy. Cytobios, 43, 273–283PubMedGoogle Scholar
  31. De Brabander, M., Nuydens, R., Geuens, G., Moeremans, M. and De Mey, J. (1986). The use of submicroscopic gold particles combined with video contrast enhancement as a simple molecular probe for the living cell. Cell Motil. Cytoskel, 6, 105–113CrossRefGoogle Scholar
  32. De Duve, C. (1984). A Guided Tour of the Living Cell. Vols 1 and 2. W.H. Freeman, New York De Mey, J. (1983). Colloidal gold probes in immunocytochemistry. In Polak, J.M. and Van Noordeu, S. (Eds), Immunocytochemistry. John Wright, Bristol, London, Boston, pp. 82–112Google Scholar
  33. De Sénarmont, H. (1840). Sur les modifications que la réflexion spéculaire à la surface des corps métalliques imprime à un rayon de lumière polarisée. Ann. Chim. Phys. (2 Série), 73, 337–353Google Scholar
  34. Ellis, G.W. (1978). Advances in visualization of mitosis in vivo. In Dirkson, E., Prescott, D.M. and Fox, C.E. (Eds), Cell Reproduction. Academic Press, New York, pp. 4657–476Google Scholar
  35. Ellis, G.W. (1985). Microscope illuminator with fiber optic source integrator. J. Cell Biol, 101, 83aGoogle Scholar
  36. Erasmus, S.J. (1982). Reduction of noise in TV rate electron microscope images by digital filtering. J. Microsc, 127, 297–37Google Scholar
  37. Fay, F.S., Fogarty, K.E. and Coggins, J.M. (1986). Analysis of molecular distributions in single cells using a digital imaging microscope. In de Weer, P. and Salzberg, B.M. (Eds), Optical Methods in Cell Physiology. Wiley Interscience, New York, pp. 517–63Google Scholar
  38. Gonzalez, R.C. and Wintz, P. (1987). Digital Image Processing, 2nd edn. Addison-Wesley, Reading, MassachusettsGoogle Scholar
  39. Gruenbaum, Y., Hochstrasser, M., Mathog, D., Saumweber, H., Agard, D.A. and Sedat, J.-W. (1984). Spatial organisation of the Drosophila nucleus: A three-dimensional cytogenetic study. J. Cell Sei., Suppl. 1, 2237–234Google Scholar
  40. Grynkeiwicz, G., Poenie, M. and Tsien, R.Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol Chem., 260, 34407–3450Google Scholar
  41. Gull, S.F. and Skilling, G. (1984). Maximum entropy method in image processing. IEEE Proc, 131F, 6467–651Google Scholar
  42. Hayden, J.H. and Allen, R.D. (1984). Detection of single microtubules in living cells: particleGoogle Scholar
  43. transport can occur in both directions on the same microtubule. J. Cell Biol, 99, 17857–1793Google Scholar
  44. Herman, B. and Albertini, D.F. (1984). A time-lapse video image intensification analysis of cytoplasmic organelle movement during endosome translation. J. Cell Biol, 98, 5657–576CrossRefGoogle Scholar
  45. Hiraoka, Y., Sedat, J.W. and Agard, D.A. (1987). The use of a charge-coupled device for quantitative optical microscopy of biological structures. Science, N.Y., 238, 367–41CrossRefGoogle Scholar
  46. Hochstrasser, M. Mathog, D., Gruenbaum, Y., Saumweber, H. and Sedat, J.W. (1986). Spatial organization of chromosomes in the salivary gland of Drosophila melanogaster. J. Cell Biol, 102, 1127–123Google Scholar
  47. Hoffman, R. (1977). The modulation contrast microscope: principles and performance. J. Microsc, 110, 2057–222Google Scholar
  48. Inoué, S. (1961). Polarizing microscope: design for maximum sensitivity. In Clark, G.L. (Ed.), The Encyclopedia of Microscopy. Reinhold, New York, pp. 4807–485Google Scholar
  49. Inoué, S. (1981a). Video image processing greatly enhances contrast, quality and speed in polarization-based microscopy. J. Cell Biol, 89, 3467–356CrossRefGoogle Scholar
  50. Inoué, S. (1981b). Cell division and the mitotic spindle. J. Cell Biol, 91, 131s7–147sCrossRefGoogle Scholar
  51. Inoué, S. (1986). Video Microscopy. Plenum, New YorkGoogle Scholar
  52. Inoué, S. and Inoué, T.D. (1986). Computer-aided stereoscopic video reconstruction and serial section display from high-resolution light-microscope optical sections. Ann. N.Y. Acad. Sei., 483, 3927–404CrossRefGoogle Scholar
  53. Inoué, S., Inoué, T.D. and Ellis, G.W. (1985). Rapid stereoscopic display of microtubule distribution by a video-processed optical sectioning system. J. Cell Biol., 101, 146aGoogle Scholar
  54. Inoué, S. and Tilney, L.G. (1982). Acrosomal reaction of Thyone sperm head visualised by high resolution video microscopy. J. Cell Biol., 93, 8127–819CrossRefGoogle Scholar
  55. Izzard, C.S. and Lochner, L.R. (1976). Cell-to-substratum contacts in living fibroblasts: an interference reflection study with an evaluation of the technique. J. Cell Sei., 21, 1297–159Google Scholar
  56. Johnson, L.V., Walsh, M.L., Bockus, B.J. and Chen, L.B. (1981). Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J. Cell Biol, 88, 5267–535CrossRefGoogle Scholar
  57. Johnson, L.V., Walsh, M.L. and Chen, L.B. (1980). Localization of mitochondria in living cells with rhodamine 123. Proc. Natl Acad. Sei. USA, 77, 9907–994Google Scholar
  58. Kachar, B. (1985). Asymmetric illumination contrast: a method of image formation for video light microscopy. Science, N.Y., 227, 7667–768Google Scholar
  59. Keith, C.H., Ratan, R., Maxfield, F.R., Bajer, A. and Shelanski, M.L. (1985). Local cytoplasmic calcium gradients in living mitotic cells. Nature, 316, 8487–850CrossRefGoogle Scholar
  60. Koonce, M.P. and Schliwa, M. (1985). Bidirectional organelle transport can occur in cell processes that contain single microtubules. J. Cell Biol., 100, 3227–326CrossRefGoogle Scholar
  61. Lipsky, N.G. and Pagano, R.E. (1985). Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesised sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane. J. Cell Biol., 100, 277–34CrossRefGoogle Scholar
  62. Luby-Phelps, K., Amato, P.A. and Taylor, D.L. (1984). Structural immunocytochemical detection of fluorescent analogs with antibodies specific for the fluorophore. Cell Motil, 4, 1377–149Google Scholar
  63. Martz, D., Lasek, R.J., Brady, S.T. and Allen, R.D. (1984). Mitochondrial motility in axons. Cell Motil, 4, 897–101Google Scholar
  64. Mathog, D. (1985). Light microscope based analysis of three-dimensional structure: Applications to the study of Drosophila salivary gland nuclei. II. Algorithms for model analysis. J. Microsc, 137, 2537–273Google Scholar
  65. Mathog, D., Hochstrasser, M., Gruenbaum, Y., Saumweber, H. and Sedat, J.W. (1984). Characteristic folding pattern of polytene chromosomes in Drosophila salivary gland nuclei. Nature, 308, 4147–421CrossRefGoogle Scholar
  66. Mathog, D., Hochstrasser, M. and Sedat, J.W. (1985). Light microscope based analysis of three-dimensional structure: application to the study of Drosophila salivary gland nuclei. I. Data collection and analysis. J. Microsc, 137, 2417–252Google Scholar
  67. Peters, R. (1985). Measurement of membrane transport in single cells by fluorescence microphotolysis. Trends Biochem. Sei., 10, 2237–227CrossRefGoogle Scholar
  68. Pratt, W.K. (1978). Digital Image Processing. Wiley, New YorkGoogle Scholar
  69. Rawlins, D.J. and Shaw, P.J. (1988). Three-dimensional organization of chromosomes of Crepis capillaris by optical tomography. J. Cell Sci, 91, 4017–414Google Scholar
  70. Reynolds, G.T. (1968). Image intensification applied to microscope systems. Adv. Optical Electron Microsc, 2, 17–40Google Scholar
  71. Reynolds, G.T. (1972). Image intensification applied to biological problems. Q. Rev. Biophys., 5, 2957–347CrossRefGoogle Scholar
  72. Reynolds, G.T. and Taylor, D.L. (1980). Image intensification applied to light microscopy. BioScience, 30, 5867–592Google Scholar
  73. Sanger, J.M., Mittal, B., Pochapin, M.B. and Sanger, J.W. (1986a). Myofibrillogenesis in living cells microinjected with fluorescently labelled alpha-actinin. J. Cell Biol, 102, 20537–2066CrossRefGoogle Scholar
  74. Sanger, J. M, Mittal, B., Pochapin, M. and Sanger, J.W. (1986b). Observations of microfilament bundles in living cells microinjected with fluorescently labelled contractile proteins. J. Cell Sei., Suppl. 5, 177–44Google Scholar
  75. Sanger, J.W., Mittal, B. and Sanger, J.M. (1984). Formation of myofibrils in spreading chick cardiac myocytes. Cell Motil, 4, 4057–416Google Scholar
  76. Schnapp, B.J. (1986). High contrast video light microscopy: Real-time imaging of microtubules and other structures smaller than the resolution limit of light optics. In Short Course: Optical Methods in Neurobiology. American Society for NeuroscienceGoogle Scholar
  77. Schnapp, B.J. (1987). Viewing single microtubules by video light microscopy. Meth. Enzymol., 134, 5617–573Google Scholar
  78. Schnapp, B.J., Vale, R.D., Sheetz, M.P. and Reese, T.S. (1985). Single microtubules from squid axoplasm support bidirectional movement of organelles. Cell, 40, 4557–462CrossRefGoogle Scholar
  79. Scholey, J. M, Porter, M.E., Grissom, P.M. and Mclntosh, J.R. (1985). Identification of kinesin in sea urchin eggs, and evidence for its localization in the mitotic spindle. Nature, 318, 4837–86CrossRefGoogle Scholar
  80. Shaw, P.J., Agard, D.A., Hiraoka, Y. and Sedat, J.W. (1989). Tilted view reconstruction in optical microscopy: three-dimensional reconstruction of Drosophila melanogaster embryo nuclei. Biophys. J., 55, 101–110PubMedCentralCrossRefPubMedGoogle Scholar
  81. Shotton, D.M. (1987). The current renaissance in light microscopy. I. Dynamic studies of living cells by video enhanced contrast microscopy. Proc. R. Microsc. Soc, 22, 37–44Google Scholar
  82. Shotton, D.M. (1988). Review: Video enhanced light microscopy and its applications in cell biology. J. Cell Sei., 89, 129–150Google Scholar
  83. Shotton, D.M. (1989). Review: Confocal scanning optical microscopy and its applications for biological specimens. J. Cell Sei., 94, 175–206Google Scholar
  84. Skaer, R.J. and Whytock, S. (1975). Interpretation of the three-dimensional structure of living nuclei by specimen tilt. J. Cell Sci, 19, 1–10PubMedGoogle Scholar
  85. Steponkus, P.L., Dowgert, M.F., Ferguson, J.R. and Levin, R.L. (1984). Cryomicroscopy of isolated plant protoplasts. Cryobiology, 21, 209–233CrossRefGoogle Scholar
  86. Tanasugarn, L.P., McNeil, G., Reynolds, G. and Taylor, D.L. (1984). Microspectrofluorometry by digital image processing: measurement of cytoplasmic pH. J. Cell Biol, 98, 717–724CrossRefPubMedGoogle Scholar
  87. Taylor, D.L., Amato, P.A., Luby-Phelps, K. and McNeil, P. (1984). Emerging techniques: fluorescence analog cytochemistry. Trends Biochem. Sci, 9, 88–91Google Scholar
  88. Taylor, D.L., Amato, P.A. McNeil, P., Luby-Phelps, K. and Tanasugarn, L. (1986a). Spatial and temporal dynamics of specific molecules and ions in living cells. In Taylor, D.L., Waggoner, A.S., Lanni, F., Murphy, R.-F. and Birge, R.R. (Eds), Applications of Fluorescence in the Biomedical Sciences. Alan R. Liss, New York, pp. 347–376Google Scholar
  89. Taylor, D.L., Waggoner, A.S., Lanni, F., Murphy, R.F. and Birge, R.R. (Eds) (1986b). Applications of Fluorescence in the Biomedical Sciences. Alan R. Liss, New YorkGoogle Scholar
  90. Taylor, D.L. and Wang, Y.-L. (1978). Molecular cytochemistry: incorporation of fluorescently labelled actin into living cells. Proc. Natl Acad. Sei. USA, 75, 857–861CrossRefGoogle Scholar
  91. Taylor, D.L. and Wang, Y.-L. (1980). Fluorescently labelled molecules as probes of the structure and function of living cells. Nature, 284, 405–410CrossRefPubMedGoogle Scholar
  92. Taylor, D.L. and Wang, Y.-L. (Eds) (1989). Fluorescence Microscopy of Living Cells in Culture: B. Quantitative Fluorescence Microscopy—Imaging and Spectroscopy. Academic Press, New YorkGoogle Scholar
  93. Tsien, R.Y. and Poenie, M. (1986). Fluorescence ratio imaging: a new window into intracellular ionic signaling. Trends Biochem. Sei., 11, 450–455CrossRefGoogle Scholar
  94. Vale, R.D., Reese, T.S. and Sheetz, M.P. (1985a). Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell, 42, 39–50PubMedCentralCrossRefPubMedGoogle Scholar
  95. Vale, R.D., Schnapp, B.J., Reese, T.S. and Sheetz, M.P. (1985b). Movement of organelles along filaments dissociated from the axoplasm of the squid giant axon. Cell, 40, 449–454CrossRefPubMedGoogle Scholar
  96. Vale, R.D., Schnapp, B.J., Reese, T.S. and Sheetz, M.P. (1985c). Organelle, bead and microtubule translocations promoted by soluble factors from the squid giant axon. Cell, 40, 559–569CrossRefPubMedGoogle Scholar
  97. van der Voort, H.T.M., Brakenhoff, G.J. and Baarslag, M.W. (1989). Three-dimensional visualization methods for confocal microscopy. J. Microsc, 153, 123–132CrossRefPubMedGoogle Scholar
  98. van der Voort, H.T.M., Brakenhoff, G.J., Valkenburg, J.A.C. and Nanninga, N. (1985). Design and use of a computer controlled confocal microscope for biological applications. Scanning, 7, 66–78CrossRefGoogle Scholar
  99. Wang, Y.-L., Heiple, J. and Taylor, D.L. (1982). Fluorescence analog cytochemistry of contractile proteins. Meth. Cell Biol, 25, 1–11CrossRefGoogle Scholar
  100. Wang, Y.-L. and Taylor, D.L. (Eds) (1989). Fluorescence Microscopy of Living Cells in Culture: A. Fluorescent Analogs, Labeling Cells, and Basic Microscopy. Academic Press, New YorkGoogle Scholar
  101. Wehland, J. and Weber, K. (1980). Distribution of fluorescently labelled actin and tropomyosin after microinjection in living tissue culture cells as observed with TV image intensification. Exp. Cell Res., 127, 397–408CrossRefPubMedGoogle Scholar
  102. Weinstein, M. and Castleman, K.R. (1971). Reconstructing 3-D specimens from 2-D section images. Proc. Soc. Photo-Opt. Instrument. Engrs (SPIE), 26, 131–138Google Scholar
  103. Weiss, D.G. (1986). Visualization of the living cytoskeleton by video-enhanced microscopy and digital image processing. J. Cell Sei., Suppl. 5, 1–15Google Scholar
  104. Williams, D.A., Fogarty, K.E., Tsien, R.Y. and Fay, F.S. (1985). Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura 2. Nature, 318, 558–561CrossRefPubMedGoogle Scholar
  105. Willingham, M.C. and Pastan, I.H. (1978). The visualization of fluorescent proteins in living cells by video intensification microscopy (VIM). Cell, 13, 501–507CrossRefPubMedGoogle Scholar
  106. Willingham, M.C. and Pastan, I.H. (1983). Image intensification techniques for detection of proteins in cultured cells. Methods Enzymol, 98, 266–283, 635CrossRefGoogle Scholar
  107. Zernike, F. (1955). How I discovered phase contrast. Science, N.Y., 121, 345–349CrossRefGoogle Scholar

Copyright information

© The Macmillan Press Ltd 1991

Authors and Affiliations

  • David M. Shotton

There are no affiliations available

Personalised recommendations