The Confluence of Advances in Light Microscopy: CCD, Confocal, Near-field and Molecular Exciton Microscopy

  • Aaron Lewis
Part of the Topics in Molecular and Structural Biology book series (TMSB)


Light microscopy has entered an exciting era in which conventional imaging with light has achieved unprecedented lateral and vertical resolution that is approaching the fundamental limits that physics imposes on imaging with light focused through a lens. In addition, new lensless techniques of optical imaging are being devised which have already overcome the limitations of these lens-based instruments that operate in the far field (at distances in which the lens and the sample are separated by multiple wavelengths of light). This chapter describes these great strides in instrumentation which have poised the field at the brink of the possibility of assembling an integrated light microscope with the capability to zoom in from low resolutions of x a few hundred to imaging with single-molecule resolution. These exciting developments will without doubt have a tremendous impact in fields ranging from biology to chemistry and physics and even technology.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agard, D.A. (1984). Ann. Rev. Biophys. Bioeng., 13, 191Google Scholar
  2. Agard, D.A. and Sedat, J. (1983). Nature, 302, 676Google Scholar
  3. Ash, E.A. and Nichols, G. (1972). Nature, 237, 510Google Scholar
  4. Betzig, E., Harootunian, A., Lewis, A. and Isaacson, M. (1986a). Appl. Opt., 25, 1890Google Scholar
  5. Betzig, E., Lewis, A., Harootunian, A., Isaacson, M. and Kratschmer, E. (1986b). Biophys. J., 49, 269Google Scholar
  6. Carrington, W.A., Fogarty, K.F., Lifschitz, L. and Fay, F.S. (1989). In Pawley, J. (Ed.), The Handbook of Biological Confocal Microscopy. IMR Press, Madison, p. 137Google Scholar
  7. Duly, P.N. (1988). Scanning, 10, 153Google Scholar
  8. Fay, F.S., Fogarty, K.E. and Coggins, J.M. (1986). In De Weer, P. and Salzberg, B. (Eds.), Optical Methods in Cell Physiology. Wiley, New York, p. 51Google Scholar
  9. Fischer, U. Ch. (1985). J. Vac. Sei. Technol, B3, 386Google Scholar
  10. Fischer, U. Ch. (1986). J. Opt. Soc. Am., B3, 1239Google Scholar
  11. Fischer, U. Ch. and Pohl, D.W. (1989). Phys. Rev. Lett., 62, 458Google Scholar
  12. Grynkiewicz, G., Poenie, M. and Tsien, R.Y. (1985). J. Biol. Chem., 260, 3440Google Scholar
  13. Gunther, P., Fischer, U. Ch. and Dransfeld, K. (1989), Appl. Phys., B48, 89Google Scholar
  14. Hansma, P.K., Drake, B., Marti, O., Gould, S.A.C. and Prater, C.B. (1989). Science, N.Y., 243, 641Google Scholar
  15. Hansma, P.K., Elings, V.B., Marti, J. and Bracker, C.E. (1988). Science, N.Y., 242, 209Google Scholar
  16. Harootunian, A., Betzig, E., Isaacson, M. and Lewis, A. (1986). Appl. Phys. Lett., 49, 674Google Scholar
  17. Hiraoka, Y., Sedat, J.W. and Agard, D.A. (1987). Science, N.Y., 238, 36–41Google Scholar
  18. Huang, J., Lewis, A. and Loew, L.M. (1988). Biophys. J., 53, 665Google Scholar
  19. Inoué, S. (1986). Video Microscopy, Plenum Press, New YorkGoogle Scholar
  20. Jovin, T.M. and Arndt-Jovin, D.J. (1989). Ann. Rev. Biophys. Biophys. Chem., 18, 271Google Scholar
  21. Keller, H.E. (1989). In Pawley, J. (Ed.), The Handbook of Biological Confocal Microscopy. IMR Press, Madison, p. 69Google Scholar
  22. Kino, G.S. and Corle, T.R. (1989). Physics Today, 42, 55Google Scholar
  23. Kopelman, R., Lewis, A. and Lieberman, K. (1989). Biophys. J., 55, 450aGoogle Scholar
  24. Leviatan, Y. (1986). J. Appl. Phys., 60, 1577Google Scholar
  25. Lewis, A., Betzig, E., Harootunian, A., Isaacson, M. and Kratschmer, E. (1988). In Loew, L.M. (Ed.), Spectroscopie Membrane Probes, Vol. II. CRC Press, Boca Raton, pp. 81–110Google Scholar
  26. Lewis, A., Haviv, V. and Nebenzahl, I. (1989). Appl. Phys. Lett, (submitted)Google Scholar
  27. Lewis, A., Isaacson, M., Harootunian, A. and Muray, A. (1984). Ultramicroscopy, 13, 227Google Scholar
  28. Lewis, A., Isaacson, M., Muray, A. and Harootunian, A. (1983). Biophys. J., 41, 405aGoogle Scholar
  29. Lewis, A., Lieberman, K., Haroush, S., Kopelman, R. and Isaacson, M. (1990). In Herman, B. and Jacobson, K. (Eds.), Digitized Video Microscopy, Alan R. Liss, New York, in pressGoogle Scholar
  30. Lieberman, K., Haroush, S., Lewis, A. and Kopelman, R. (1990). Science, N.Y., 247, 59Google Scholar
  31. Masters, B.R. (1988). SPIE, 1028, 133Google Scholar
  32. Minsky, M., US Patent 3,013,346, 19 December 1961Google Scholar
  33. O’Keefe, J.A. (1956). J. Opt. Soc. Am, 45, 359Google Scholar
  34. Petran, M., Hadravsky, M. and Boyde, A. (1985). Scanning, 7, 97Google Scholar
  35. Pohl, D.W., Denk, W. and Lanz, M. (1984). Appl. Phys. Lett., 44, 651Google Scholar
  36. Reddick, R. C, Warmack, R.J. and Ferrell, T.L. (1989). Phys. Rev., B39, 767Google Scholar
  37. Regehr, W.G., Connor, J.A. and Tank, D.W. (1989). Nature, 341, 533Google Scholar
  38. Rykowski, M. C, Parmelee, S.J., Agard, D.A. and Sedat, J.W. (1989). Cell, 54, 461Google Scholar
  39. Sheppard, C.J.R. (1988). Optik, 80, 53Google Scholar
  40. Shuman, H. (1989). Biotechniques, 7, 59Google Scholar
  41. Stryer, L. (1978). Ann. Rev. Biochem., 47, 819 van Spronsen, E.A., Sarafis, V., Brakenhoff, G.J., van der Voort, H.T.M. and Nanninga, N. (1989). Protoplasma, 148, 8Google Scholar
  42. Tank, D.W., Sugimori, M., Conner, J.A. and Llinâs, R.R. (1988). Science, 242, 774Google Scholar
  43. Webb, W.W., Wells, K.S., Sandison, D.R. and Strickler, J. (1990). In Herman, B. and Jacobson, K. (Eds.), Digitized Video Microscopy. Alan R. Liss, New York (in press)Google Scholar
  44. Wessel, J. (1985). J. Opt. Soc. Am., B2, 1538Google Scholar
  45. Wilson, T. and Sheppard, C.J.R. (1984). Theory and Practice of Scanning Optical Microscopy. Academic Press, New YorkGoogle Scholar
  46. Xiao, G.Q., Corle, T.R. and Kino, G.S. (1988). Appl. Phys. Lett., 53, 716Google Scholar

Copyright information

© The Macmillan Press Ltd 1991

Authors and Affiliations

  • Aaron Lewis

There are no affiliations available

Personalised recommendations