The Dynamic Study of Cell Surface Organization by Nanoparticle Video Microscopy

  • H. Geerts
  • M. De Brabander
  • R. Nuydens
  • R. Nuyens
Part of the Topics in Molecular and Structural Biology book series (TMSB)


To follow individual, well-defined molecular structures in living cells has always been a dream of cell biologists. This is an important step in the evolution towards a biochemistry in situ. Indeed, quantifying the localization and dynamics of molecular biological activity should illuminate details of the biochemical reaction.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie, M., Heaysman, J., Pergrum, S. (1970). The Locomotion of fibroblasts in culture. III: Movements of particles on dorsal surface of the leading lamella. Exp. Cell Res., 60, 437– 444Google Scholar
  2. Allen, R.D., Allen, N.S., Travis, J.L. and Ylmaz, H. (1981). Video-enhanced contrast polarisation (AVEC-POL) microscopy: a new method applied to the detection of birefringence in the mobile reticulopodial network of Allogramia laticollaris. Cell Mo til., 1, 291Google Scholar
  3. Bretscher, M. (1984). Endocytosis: relation to capping and cell locomotion. Science, N.Y., 224, 681–686Google Scholar
  4. Chow, I. and Poo, M. (1982). Redistribution of cell surface receptors induced by cell-cell contact. J. Cell Biol., 95, 510–518CrossRefPubMedGoogle Scholar
  5. De Brabander, M., Geuens, G., Nuydens, R., Moeremans, M. and De Mey, J. (1985). Probing microtubule dependent intracellular motility with nanometer particle video ultramicroscopy. Cytobios, 43, 273Google Scholar
  6. De Brabander, M., Nuydens, R., Geuens, G., Moeremans, M. and De Mey, J. (1986). The use of submicroscopic gold particles combined with video contrast enhancement as a simple molecular probe for the living cells. Cell Motil., Cytoskeleton, 6, 105CrossRefGoogle Scholar
  7. De Brabander, M., Nuydens, R., Geerts, H. and Hopkins, C. (1988). Dynamic behavior of the trarisferrin receptor followed in living epidermoid carcinoma cells (A431) with Nanovid microscopy. Cell Motil., Cytoskeleton, 9, 30–47CrossRefGoogle Scholar
  8. De Brabander, M., Nuydens, R., Geerts, H. and Nuyens, R. (1989). Applications of Nanovid microscopy. In Verkleij, A. and Leunissen, J. (Eds) Immunogold Staining in Cell Biology. CRC (in press)Google Scholar
  9. De Brabander, M., Nuydens, R., Geerts, H., Jacobson, K., Ishihara, A. and Hollifield, B. (1990). Dynamics of individual cell surface components on living PTK2-cells, observed with Nanovid microscopy. Manuscript in preparationGoogle Scholar
  10. Diggle, J.P. (1979). On parameter estimation and goodness-of-fit testing for spatial point patterns. Biometrics, 35, 87–101Google Scholar
  11. De Mey, J. (1984). In Polak, J. and van Noorden, S. (Eds), Immunocytochemistry. John Wright, Bristol, pp. 92–110Google Scholar
  12. Geerts, H., De Brabander, M., Nuydens, R., Geuens, S., Moeremans, M., De Mey, J. and Hollenbeck, P. (1987a). Nanovid tracking: a new automatic method for the study of mobility in living cells based on colloidal gold and video microscopy. Biophys. J., 52, 775–782PubMedCentralCrossRefPubMedGoogle Scholar
  13. Geerts, H., De Brabander, M., Nuydens, R. and Nuyens, R. (1987b). Nanovid correlation spectroscopy: Quantitative analysis of cell surface motility with polylysine coated gold probes. Proc. IX International Biophysics Congress, JerusalemGoogle Scholar
  14. Geerts, H., De Brabander, M., Nuydens, R. and Nuyens R. (1989). Detection and use of gold probes with video-enhanced contrast microscopy. In Childs, G. (Ed.), Advances in Immunogold Technology. Special Issue, American Journal of Anatomy, Alan R. Liss, New York Grahame, D. (1947). Chem. Rev., 44, 441–501Google Scholar
  15. Harris, A. and Dunn, G. (1972). Centripetal transport of attached particles on both surfaces of moving fibroblasts. Exp. Cell Res., 73, 519–523CrossRefPubMedGoogle Scholar
  16. Heath, J. (1983). Behavior and structure of the leading lamella in moving fibroblasts. Occurrence and centripetal movement of arc-shaped microfilament bundles beneath the dorsal cell membrane. J. Cell. Sei., 60, 331–354Google Scholar
  17. Inoué, S. (1981). Video-image processing greatly enhances contrast, quality and speed in polarisation-based microscopy. J. Cell Biol, 89, 346–356CrossRefPubMedGoogle Scholar
  18. Ishihara, A., Hou, Y. and Jacobson, K. (1987). The Thy-1 antigen exhibits rapid lateral diffusion in the plasma membrane of roden lymphoid cells and fibroblasts. Proc. Natl Acad. Sei. USA, 84, 1290–1293CrossRefGoogle Scholar
  19. Isihihara, A., Hollifield B. and Jacobson K. (1988). Analysis of lateral redistribution of a monoclonal antibody complex plasma membrane glycoprotein which occurs during cell locomotion. J. Cell Biol, 106, 329–343CrossRefGoogle Scholar
  20. Peters, R. (1981). Translational diffusion in the plasma membrane of single cells as studied by fluorescence microphotolysis. Cell Biol Int. Rep., 5, 733–769CrossRefPubMedGoogle Scholar
  21. Radoev, B. and Tenchov, B. (1987). j. Phys. A: Math. Gen., 20, L159–L162Google Scholar
  22. Rapaport, D.C. (1985). J. Stat. Phys., 40, 751–758Google Scholar
  23. Skutelsky, E. and Roth, J. (1986). Cationic colloidal gold—a new probe for the detection of anionic cell surface sites by electron microscopy. J. Histochem. Cytochem., 34, 693–696CrossRefPubMedGoogle Scholar
  24. Taylor, D.L. and Wang, Y.L. (1980). Fluorescently labelled molecules as probes of the structure and function of living cells. Nature, 284, 405–410CrossRefPubMedGoogle Scholar
  25. Woda, B., Yguerabide, J. and Feldman J. (1980). The effect of local anesthetics on the lateral mobility of lymphocyte membrane proteins. Exp. Cell Res., 126, 327–331CrossRefPubMedGoogle Scholar

Copyright information

© The Macmillan Press Ltd 1991

Authors and Affiliations

  • H. Geerts
  • M. De Brabander
  • R. Nuydens
  • R. Nuyens

There are no affiliations available

Personalised recommendations