Time-resolved Fluorescence Microscopy

  • Rujiang Tian
  • Michael A. J. Rodgers
Part of the Topics in Molecular and Structural Biology book series (TMSB)


The emission of light by molecules excited to upper electronic states has proved to be an extremely useful probe for obtaining information about molecules and their environment. The application of time-resolved techniques to a study of fluorescence produces information on the dynamics of probes and how such are influenced by environments; the application of microscopic methods yields spatial and positional information which, in biological milieux, can designate the type of environment of the probe. The coupling of temporal and spatial technology offers an interesting new way of studying spatially inhomogeneous situations, the biological cell being archetypal in this characteristic.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreoni, A., Cova, S., Bottiroli, G. and Prenna, G. (1979). Fluorescence of complexes of quinacrine mustard with DN A-Il. Dependence on the staining conditions. Photochem. Photobiol, 29, 951–957CrossRefGoogle Scholar
  2. Andreoni, A. and Cubeddu, R. (1983). Properties of the blue-shifted emission of hematopor-phyrin and related derivatives in aqueous solution. Chem. Phys. Lett., 100, 503–507CrossRefGoogle Scholar
  3. Andreoni, A., Sacchi, C.A., Cova, S., Bottiroli, G. and Prenna, G. (1975). Pulsed tunable laser in cytofluorometry: a study of the fluorescence pattern of chromosomes. In Joussot-Dubien, J. (Ed.), Lasers in Physical Chemistry and Biophysics. Elsevier, New York, pp. 413–423Google Scholar
  4. Arndt-Jovin, D.J., Latt, S.A., Striker, G. and Jovin, T.M. (1979). Fluorescence decay analysisGoogle Scholar
  5. in solution and in a microscope of DNA and chromosomes stained with quinacrine. J. Histochem. Cytochem., 27, 87–95Google Scholar
  6. Bebelaar, D. (1986). Time response of various types of photomultipliers and its wavelength dependence in time correlated single photon counting with ultimate resolution of 47 ps FWHM. Rev. Sei. Instrum., 57, 1116–1125CrossRefGoogle Scholar
  7. Birks, J.B. (1970). Photophysics of Aromatic Molecules. Wiley-Interscience, New YorkGoogle Scholar
  8. Bottiroli, G., Cionini, P.G., Docchio, F. and Sacchi, C.A. (1984). In situ evaluation of the functional state of chromatin by means of quinacrine mustard staining and time-resolved fluorescence microscopy. Histochem. J., 16, 223–233Google Scholar
  9. Bottiroli, G., Docchio F., Ramponi, R., Sacchi, C.A. and Supino, R. (1986). A 580 nm emission in haematoporphyrin-derivative solution and in treated cells. Lasers Med. Sei., 1, 33–39CrossRefGoogle Scholar
  10. Bottiroli, G., Prenna, G., Andreoni, A., Sacchi, C.A. and Svelto, O. (1979). Fluorescence of complexes of quinacrine mustard with DNA-I. Influence of the DNA base composition on the decay time in bacteria. Photochem. Photobiol., 29, 23–28CrossRefGoogle Scholar
  11. Bugiel, I., Konig, K. and Wabnitz, H. (1989). Investigation of cells by fluorescence laser scanning microscopy with subnanosecond time resolution. Lasers Life Sei. (submitted)Google Scholar
  12. Caspersson, T., Zech, L., Johansson, C. and Modest, E.J. (1970). Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma, 30, 215–217Google Scholar
  13. Docchio, F., Ramponi, R., Sacchi, C.A., Bottiroli, G. and Freitas, I. (1982). Time-resolved fluorescence microscopy of hematoporphyrin-derivative in cells. Lasers Surg. Med., 2, 21–28CrossRefPubMedGoogle Scholar
  14. Docchio, F., Ramponi, R., Sacchi, C.A., Bottiroli, G. and Freitas, I. (1984a). An automatic pulsed laser microfluorometer with high spatial and temporal resolution. J. Mier ose., 134, 151–160Google Scholar
  15. Docchio, F., Ramponi, R., Sacchi, C.A., Bottiroli, G. and Freitas, I. (1984b). Time-resolved fluorescence spectroscopy of hematoporphyrin-derivative in human lymphocytes. Chem. Biol. Interact., 50, 135–141CrossRefPubMedGoogle Scholar
  16. Docchio, F., Ramponi, R., Sacchi, C.A., Bottiroli, G. and Freitas, I. (1985). Time-resolved fluorescence microscopy: Examples of applications to biology. Ettore Majorana Int. Sei. Ser Phys. Sei. (Laser Photobiol. Photomed.), 22, 85–100Google Scholar
  17. Dougherty, T.J., Grindey, G.B., Fiel, R., Weishaupt, K.R. and Boyle, D.G. (1975). Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J. Natl . Cancer. Inst., 55, 115–120PubMedGoogle Scholar
  18. Johnston, T.F. Jr. (1987). Tunable dye lasers. Encyclopedia of Physical Science and Technology, 14, 96–141Google Scholar
  19. Kessel, D. (1977). Effects of photoactivated porphyrins at the cell surface of leukemia L1210 cells. Biochemistry, 16, 3443–3449PubMedCentralCrossRefPubMedGoogle Scholar
  20. Kinoshita, K., Ito, M. and Suzuki, Y. (1987). Femtosecond streak tube. Rev. Sei. Instrum., 58, 932–938CrossRefGoogle Scholar
  21. Minami, T., Kawahigashi, M., Sakai, Y., Shimamoto, K. and Hirayama, S. (1986). Fluorescence lifetime measurements under a microscope by the time-correlated single photon counting technique. J. Lumin., 35, 247–253CrossRefGoogle Scholar
  22. Moan, J. and Sommer, S. (1983). Uptake of the components of hematoporphyrin derivative by cells and tumors. Cancer Lett., 21, 167–174CrossRefPubMedGoogle Scholar
  23. Moan, J. and Sommer, S. (1984). Action spectra for hematoporphyrin derivative and Photofrin II with respect to sensitization of human cells in vitro to photoinactivation. Photochem. Photobiol., 40, 631–634Google Scholar
  24. O’Connor, D.V. and Phillips, D. (1984). Time-correlated Single Photon Counting. Academic Press, New YorkGoogle Scholar
  25. Ramponi, R. and Rodgers, M.A.J. (1987). An instrument for simultaneous acquisition of fluorescence spectra and fluorescence lifetimes from single cells. Photochem. Photobiol., 45, 161–165CrossRefPubMedGoogle Scholar
  26. Reuter, B.W., Egeler, T., Schneckenburger, H. and Schoberth, S.M. (1986). In vivo measurement of F420 fluorescence in cultures of Methanobacterium thermoautotrophicum. J. Biotechnol, 4, 325–332Google Scholar
  27. Ricchelli, F. and Grossweiner, L.I. (1984). Properties of a new state of hematoporphyrin in dilute aqueous solution. Photochem. Photobiol., 40, 599–606CrossRefPubMedGoogle Scholar
  28. Rodgers, M.A.J. and Firey, P.A. (1985). Instrumentation for fluorescence microscopy with picosecond time resolution. Photochem. Photobiol., 42, 613–616CrossRefPubMedGoogle Scholar
  29. Salet, C. and Moreno, G. (1981). Photodynamic effects of hematoporphyrin on respiration and calcium uptake in isolated mitochondria. Int. J. Radiat. Biol, 39, 227–230CrossRefGoogle Scholar
  30. Schneckenburger, H. (1985). Time resolved microfluoresence in biomedical diagnosis. Optical Eng., 24, 1042–1044CrossRefGoogle Scholar
  31. Schneckenburger, H., Feyh, J., Gotz, A., Frenz, M. and Brendel, W. (1987a). Quantitative in vivo measurement of the fluorescent components of photofrin II. Photochem. Photobiol., 46, 765–768CrossRefPubMedGoogle Scholar
  32. Schneckenburger, H. and Frenz, M. (1986). Time-resolved fluorescence of conifers exposed to environmental pollutants. Radiat. Environ. Biophys., 25, 289–295CrossRefPubMedGoogle Scholar
  33. Schneckenburger, H., Frenz, M., Tsuchiya, Y., Denzer, U. and Schleinkofer, L. (1987b).Google Scholar
  34. Picosecond fluorescence microscopy for measuring chlorophyll and porphyrin components in conifers and cultured cells. Lasers Life Sei., 1, 299–307Google Scholar
  35. Schneckenburger, H., Pauker, F., Unsold, E. and Jocham, D. (1985). Intracellular distribution and retention of the fluorescent components of photofrin II. Photochem. Photophys., 10, 61– 67Google Scholar
  36. Schneckenburger, H. and Reuter, B.W. (1984). Time-resolved fluorescence microscopy for measuring specific coenzymes in methanogenic bacteria. Anal. Chim. Acta., 163, 249–255CrossRefGoogle Scholar
  37. Schneckenburger, H., Seidlitz, H.K. and Eberz, J. (1988). Time-resolved fluorescence in photobiology. J. Photochem. Photobiol. B: Biol., 2, 1–19CrossRefGoogle Scholar
  38. Schneckenburger, H. and Wustrow, T.P.U. (1988). Intracellular fluorescence of photosensitizing porphyrins at different concentrations of mitochondria. Photochem. Photobiol., 47, 471– 473Google Scholar
  39. Schonbohm, E. (1987). Movement of Mougeotia. chloroplasts under continuous weak and strong light. Ada Physiol. Plant., 9, 109–135Google Scholar
  40. Selander, R.K. (1973). Interaction of quinacrine mustard with mononucleotides and polynuc-leotides . Bio ehe m. J., 131, 749–755Google Scholar
  41. Sommer, S., Rimington, C. and Moan, J. (1984). Formation of metal complex of tumor-localizing porphyrins. FEBS Lett., 172, 267–271CrossRefPubMedGoogle Scholar
  42. Weisblum, B. and Haseth, P.L. de (1972). Quinacrine, a chromosome stain specific for deoxyadenylate-deoxythymidylate-rich regions in DNA. Proc. Natl. Acad. Sei. USA. 69, 629– 632Google Scholar
  43. Winkelman, J. (1961). Intracellular localization of hematoporphyrin in a transplanted tumor. J. Natl Cancer lnst., 27, 1369–1377Google Scholar

Copyright information

© The Macmillan Press Ltd 1991

Authors and Affiliations

  • Rujiang Tian
  • Michael A. J. Rodgers

There are no affiliations available

Personalised recommendations