Fluorescence Photobleaching Techniques

  • Reiner Peters
  • Manfred Scholz
Part of the Topics in Molecular and Structural Biology book series (TMSB)


In the early 1970s fluidity became a central topic of membrane biology. The classical paper by Singer and Nicolson (1972) on The fluid mosaic model of the structure of cell membranes’ integrated current speculations and results by visualizing the plasma membrane as a fluid lipid bilayer decorated and intercalated with proteins. In this model the lateral movement of membrane lipids and proteins was expected to have profound effects—for instance, on the rate of chemical reactions (Adam and Delbriick, 1968) or the transmission of hormonal signals (Cuatrecasas, 1974). Experimentally, lateral mobility in membranes was first inferred from cell fusion studies (Frye and Edidin, 1970), from patching and capping phenomena of immunoreceptors on lymphocytes (Taylor et al, 1971), from freeze-fracture studies of membrane intercalated particles (da Silva, 1972) and from the mobility of spinlabels in artificial lipid bilayers (Träuble and Sackmann, 1972). The first measurement of diffusional movement in a cell membrane, however, was provided by Cone (1972), who applied time-resolved absorption measurements to follow the rotational movement of rhodopsin in amphibian photoreceptors. Rhodopsin was found to be highly mobile, which strongly supported the fluid mosaic model.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, G. and Delbrück, M. (1968). In Rich, A. and Davidson, N. (Eds), Structural Chemistry and Molecular Biology. Freeman, San Francisco, London, pp. 198–215Google Scholar
  2. Angelides, K.J., Elmer, L.W., Loftus, D. and Elson (1988). Distribution and lateral mobility of voltage-dependent sodium channels in neurons. J. Cell Biol, 106, 1911–1925CrossRefPubMedGoogle Scholar
  3. Aroeti, B. and Henis, Y.I. (1988). Effects of fusion temperature on the lateral mobility of Sendai virus glycoproteins in erythrocyte membranes and on cell fusion indicate that glycoprotein mobilization is required for cell fusion. Biochemistry, 27, 5641–5661CrossRefGoogle Scholar
  4. Axelrod, D. (1977). Cell surface heating during fluorescence photobleaching recovery experiment. Biophys. J., 18, 129–131PubMedCentralCrossRefPubMedGoogle Scholar
  5. Axelrod, D. (1983). Lateral motion of membrane proteins and biological function. J. Memb. Biol., 75, 1–10CrossRefGoogle Scholar
  6. Axelrod, D. and Burghardt, T.P. (1984). Total internal reflection fluorescence. Ann. Rev. Biophys. Bioeng., 13, 247–268CrossRefGoogle Scholar
  7. Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E. and Webb, W.W. (1976). Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J., 16, 1055–1069PubMedCentralCrossRefPubMedGoogle Scholar
  8. Benveniste, M., Livhe, E., Schlessinger, J. and Kam, Z. (1988). Overexpression of epidermal growth factor receptor in NIH-3T3-transfected cells slows its lateral diffusion and rate of endocytosis. J. Cell Biol., 106, 1903–1999CrossRefPubMedGoogle Scholar
  9. Bloom, J.A. and Webb, W.W. (1984). Photodamage to intact erythrocyte membranes at high laser intensities: methods of assay and suppression. J. Histochem. Cytochem., 32, 608–616CrossRefPubMedGoogle Scholar
  10. Branton, D., Cohen, C.M. and Tyler, J. (1981). Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell, 24, 24–32CrossRefPubMedGoogle Scholar
  11. Bülow, R., Overath, P. and Davoust, J. (1988). Rapid lateral diffusion of the variant surface glycoprotein in the coat of Trypanosoma brucei. Biochemistry, 27, 2384–2388Google Scholar
  12. Brünger, A., Peters, R. and Schulten, K. (1985). Continuous fluorescence microphotolysis to observe lateral diffusion in membranes. J. Chem. Phys., 28, 2147–2161Google Scholar
  13. Burghardt, T.P. and Axelrod, D. (1981). Total internal reflection/fluorescence photobleaching recovery study of serum albumin adsorption dynamics. Biophys. J., 33, 455–468Google Scholar
  14. Chary, S.R. and Jain, R.K. (1987). Analysis of diffusive and convective recovery of fluorescence after photobleaching—Effect of uniform flow field. Chem. Eng. Commun., 55, 235–249CrossRefGoogle Scholar
  15. Chazotte, B. and Hackenbrock, C.R. (1988). The multicollisional, obstructed, long-range diffusional nature of mitochondrial electron transport. J. Biol. Chem., 263., 14359–14367Google Scholar
  16. Cone, R.A. (1972). Rotational diffusion of rhodopsin in the visual receptor membrane. Nature New Biol., 236, 39–3CrossRefPubMedGoogle Scholar
  17. Cuatrecasas, P. (1974). Membrane receptors. Ann. Rev. Biochem.,43, 169–214Google Scholar
  18. Dale, R.E. (1985). Interpretation of fluorescence photobleaching recovery experiments on oriented cell membranes. FEBS Lett., 192, 255–258CrossRefPubMedGoogle Scholar
  19. Da Silva, P.P. (1972). Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. J. Cell Biol., 53, 777–787Google Scholar
  20. Davoust, J., Davaux, P. and Leger, L. (1982). Fringe pattern photobleaching, a new method for the measurement of transport coefficients of biological macromolecules. EMBO J., 1, 1233–1238Google Scholar
  21. Duband, J.L., Nuckolls, G.H., Ishihara, A., Hasegawa, T. and Yamada, K.M. (1988). Fibronectin receptor exhibits high lateral mobility in embryonic locomoting cells but is immobile in focal contacts and fibrillar streaks in stationary cells. J. Cell Biol, 107,1385-1396Google Scholar
  22. Edidin, M. (1987). Rotational and lateral diffusion of membrane proteins and lipids: Phenomena and function. Curr. Top. Memb. Transport, 29, 91–127Google Scholar
  23. Edidin, M. and Wey, T.Y. (1977). Diffusion rates of cell surface antigens of mouse-human heterokaryons. II. Effect of membrane potential on lateral diffusion. J. Cell Biol., 75,483-489Google Scholar
  24. Edidin, M., Zagyansky, Y. and Lardner, T.J. (1976). Measurement of membrane protein lateral diffusion in single cells. Science, N.Y., 191, 466–468Google Scholar
  25. Elson, E.L. and Reidier, J.A. (1979). Analysis of cell surface interactions by measurement of lateral mobility. /. Supramolec. Struct., 12, 481–489Google Scholar
  26. Frye, L.D. and Edidin, M. (1970). The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. T. Cell. Sei., 7, 319–335Google Scholar
  27. Garland, P. (1981). Fluorescence photobleaching recovery: Control of laser intensities with an acousto-optical modulator. Biophys. J., 33, 481–482Google Scholar
  28. Golan, D.E., Furlong, S.T., Brown, C.S. and Caulfield, J.P. (1988). Monopalmitoylphosphati-dylcholine incorporation into human erythrocyte ghost membranes causes protein and lipid immobilization and cholesterol depletion. Biochemistry, 27, 2661–2667Google Scholar
  29. Golan, D.E. and Veatch, W. (1980). Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: Evidence for control by cyto-skeletal interactions. Proc. Natl Acad. Sei. USA, 77, 2537–2541Google Scholar
  30. Gorbsky, G.J. and Borisy, G.G. (1988). Hapten-mediated immonochytochemistry: The use of fluorescent and non-fluorescent haptens for the study of cytoskeletal dynamics in living cells. Meth. Cell Biol, 29, 175–193Google Scholar
  31. Henis, Y.I. (1989). Lateral mobility measurement of cell surface components: Applications for molecular pharmacology. Trends Pharmacol Sei., 10, 95–98Google Scholar
  32. Icenogle, R.D. and Elson, E.L. (1983). Fluorescence correlation spectroscopy and photobleaching recovery of multiple binding reactions. II. FPR and FCS measurements at low and high. DNA concentrations. Biopolymers, 22, 1949–1966Google Scholar
  33. Inuoé, T., Nemoto, N., Kojima, T. and Kurata, M. (1988). Comparison of the self-diffusion coefficient of polysterene in solution estimated by forced Rayleigh scattering and fluorescence recovery after photobleaching. Polymer J. (Tokyo), 20, 869–874Google Scholar
  34. Ishihara, A., Hou, Y. and Jacobson, K. (1987). The Thy-1 antigen exhibits rapid lateral diffusion in the plasma membrane of rodent lymphoid cells and fibroblasts. Proc. Natl Acad. Sei. USA, 84, 1290–1293Google Scholar
  35. Jacobson, K., Hou, Y. and Wojcieszyn, J. (1978). Evidence for lack of damage during photobleaching measurements of the lateral mobility of cell surface components. Exp. Cell Res., 116, 179–189Google Scholar
  36. Jacobson, K., Ishihara, A. and Inman, R. (1987). Lateral diffusion of proteins in membranes. Ann. Rev. Physiol., 49, 163–175Google Scholar
  37. Jacobson, K., Wu, E.-S., and Poste, G. (1976). Measurement of the translational mobility of concanavalin A in glycerol-saline solutions ahd on the cell surface by fluorescence recovery after photobleaching. Biochim. Biophys. Acta, 433, 215–222Google Scholar
  38. Jans, D.A., Peters, R., Zsigo, J. and Fahrenholz, F. (1989). The adenylate cyclase-coupled vasopressin V2-receptor is highly laterally mobile in membranes of LLC-PK1 porcine epithelial cells at physiological temperature. EMBO J. (in press)Google Scholar
  39. Johnson, P. and Garland, P.B. (1981). Depolarization of fluorescence depletion. A microscopic method for measuring rotational diffusion of membrane proteins on the surface of a single cell. FEBS Lett., 132, 252–256Google Scholar
  40. Jovin, M.T. and Arndt-Jovin, D.J. (1989). In Kohen, E. (Ed.), Microspectrometry. Academic Press, New York, pp. 99–117 Jovin, T.M. and Vaz, W.L.C. (1989). Rotational and translational diffusion in membranes measured by fluorescence and phosphorescence methods. Meth. Enzymol, 172, 471–513Google Scholar
  41. Kitani, K., Zsolnai-Nagy, I., Kanai, S., Sato, Y. and Ohta, M. (1988). Correlation between the biliary excretion of ouabain and the lateral mobility of hepatocyte plasma membrane proteins in the rat—the effects of age and spironolactone pretreatment. Hepatology, 8, 125–131Google Scholar
  42. Koppel, D.E. (1979). Fluorescence redistribution after photobleaching. A new multipoint analysis of membrane translational dynamics. Biophys. J., 28, 281–292PubMedCentralCrossRefPubMedGoogle Scholar
  43. Koppel, D.E., (1983). In Sha’afi, R.I. and Fernandez, S.M. (Eds), Fast Methods in Physical Biochemistry and Cell Biology. Elsevier, Amsterdam, pp. 339–367Google Scholar
  44. Koppel, D.E. and Sheetz, M.P. (1981). Fluorescence photobleaching does not alter the lateral mobility of erythrocyte membrane glycoproteins. Nature, 293, 159–161CrossRefPubMedGoogle Scholar
  45. Krafft, G.A., Cummings, R.T., Dizio, J.P., Furukawa, R.H., Brvenik, L.J., Sutton, W.R. and Ware, B.R. (1986). In Peters, R. and Trendelenburg, M. (Eds), Nucleocytoplasmic Transport. Springer-Verlag, Heidelberg, pp. 53–54Google Scholar
  46. Kyle, D.J., Staehelin, L.A. and Arntzen, C.J. (1983). Lateral mobility of the light-harvesting complex in chloroplast membranes controls excitation energy distribution in higher plants. Arch. Biochem. Biophys., 222, 527–541CrossRefPubMedGoogle Scholar
  47. Lang, I., Scholz, M. and Peters, R. (1986). Molecular mobility and nucleocytoplasmic flux of macromolecules in hepatoma cells. J. Cell Biol, 102, 1183–1190CrossRefPubMedGoogle Scholar
  48. Lanni, F. and Ware, B.R. (1982). Modulation detection of fluorescence photobleaching recovery. Rev. Sei. Instrum., 53, 905–908CrossRefGoogle Scholar
  49. Lardner, T.J. (1977). The measurement of cell membrane diffusion coefficients. J. Biomech., 10, 167–170CrossRefPubMedGoogle Scholar
  50. Lepock, J.R., Thompson, J.E., Kruur, J. and Wallack, D.F.H. (1978). Photoinduced crosslinking of membrane proteins by fluorescein isothiocyanate. Biochem. Biophys. Res. Comm., 85, 344–350CrossRefPubMedGoogle Scholar
  51. Liebman, P.A., Weiner, H.L. and Drzymala, R.E. (1982). Lateral diffusion of visual pigment in rod disk membranes. Meth. Enzymol, 81, 660–668CrossRefPubMedGoogle Scholar
  52. Lopez, A., Dupou, L., Autibelli, A., Trotard, J. and Tocanne, J.-F. (1988), Fluorescence recovery after photobleaching (FRAP) experiments under conditions of uniform disk illumination. Biophys. J., 53, 963–970Google Scholar
  53. Luby-Phelps, K., Lanni, F. and Taylor, D.L. (1988). The submicroscopic properties of cytoplasm as a determinant of cellular function. Ann. Rev. Biophys. Chem., 17, 369–396CrossRefGoogle Scholar
  54. Lustyik, G., Kitani, K. and Ohta, M. (1987). The mobility of concanavalin A receptors and surface immunoglobulins on rat hepatocyte plasma membranes. Biochim. Biophys. A, 896, 57– 63Google Scholar
  55. Meiler, P., Peters, R. and Ringsdorf, H. (1989). Microstructure and lateral diffusion in monolayers of polymerizable amphiphiles. Colloid Polymer Sei., 267, 97–107CrossRefGoogle Scholar
  56. Metcalf, T.N., Villaneuva, M.A., Schindler, M. and Wang, J.L. (1986). Monoclonal antibodies directed against protoplasts of soybean cells: Analysis of the lateral mobility of plasma membrane-bound antibody MVS-1. J. Cell Biol, 102, 1350–1357CrossRefPubMedGoogle Scholar
  57. Nakache, M., Schreiber, A.B., Gaub, H. and McConnell, H.M. (1985). Heterogeneity of membrane phospholipid mobility in endothelial cells depends on cell substrate. Nature, 317, 75–77CrossRefPubMedGoogle Scholar
  58. Nigg, E., Kessler, M. and Cherry, R.J. (1979). Labeling of human erythrocyte membranes with eosin probes used for protein diffusion measurements. Inhibition of anion transport and photo-oxidative inactivation of acetycholinesterase. Biochim Biophys. Ada, 550, 328– 340Google Scholar
  59. Noda, M., Yoon, K., Rodan, G.A. and Koppel, D.E. (1987). High lateral mobility of endogeneous and transfected alkaline phosphatase: a phosphatidylinositol-anchored membrane protein. J. Cell Biol, 105, 1671–1677CrossRefPubMedGoogle Scholar
  60. Peng, H.B., Zhao, D.Y., Xie, M.Z., Shen, Z.W. and Jacobson, K. (1989). The role of lateral migration in the formation of acetylcholine receptor clusters induced by basic polypeptide-coated latex beads. Dev. Biol, 131, 197–206CrossRefPubMedGoogle Scholar
  61. Peters, R. (1981). Translational diffusion in the plasma membrane of single cells as studied by fluorescence microphotolysis. Cell Biol Int. Rep., 5, 733–760CrossRefPubMedGoogle Scholar
  62. Peters, R. (1983). Nuclear envelope permeability measured by fluorescence microphotolysis of single liver cell nuclei. J. Biol Chem., 258, 11427–11429PubMedGoogle Scholar
  63. Peters, R. (1984a). Flux measurement in single cells by fluorescence microphotolysis. Eur. Biophys. J., 11, 43–50CrossRefPubMedGoogle Scholar
  64. Peters, R. (1984b). Nucleo-cytoplasmic flux and intracellular mobility in single hepatocytes measured by fluorescence microphotolysis. EM BO J., 3, 1831–1836Google Scholar
  65. Peters, R. (1986) Fluorescence microphotolysis to measure nucleocytoplasmic transport and intracellular mobility. Biochim. Biophys. Acta, 864, 305–359Google Scholar
  66. Peters, R. (1988). Lateral mobility of proteins and lipids in the red cell membrane and the activation of adenylate cyclase by beta-adrenergic receptors. FEBS Lett., 234, 1–7CrossRefPubMedGoogle Scholar
  67. Peters, R., Briinger, A. and Schulten, K. (1981). Continuous fluorescence microphotolysis: A sensitive method for study of diffusion processes in single cells. Proc. NatlAcad. Sei. USA, 78, 962–966CrossRefGoogle Scholar
  68. Peters, R. and Passow, H. (1984). Anion transport in single erythrocyte ghosts measured by fluorescence microphotolysis. Biochem. Biophys. Acta, 777, 334–338CrossRefPubMedGoogle Scholar
  69. Peters, R., Peters, J., Tews, K.H. and Bahr, W. (1974). A microfluorimetric study of translational diffusion in erythrocyte membranes. Biochim. Biophys. Ada, 367, 282–294CrossRefGoogle Scholar
  70. Petersen, N.O., Felder, S. and Elson, E.L. (1986). In Herzenberg, L.A., Blackwell, C. and Herzenberg, L.A. (Eds), Handbook of Experimental Immunology, Vol. 1. Blackwell, Oxford, pp. 24.1–24.23Google Scholar
  71. Phelps, B.M., Primakoff, P., Koppel, D.E., Low, M.G. and Myles, D.G. (1988). Restricted lateral diffusion of PH-20, a Pi-anchored sperm membrane protein. Science, N.Y., 240, 1780– 1782Google Scholar
  72. Pollerberg, G.E., Schachner, M. and Davoust, J. (1986). Differentiation state-dependent surface mobilities of two forms of the neural cell adhesion molecule. Nature, 324, 462–465CrossRefPubMedGoogle Scholar
  73. Poo, M.-M. and Cone, R.A. (1974). Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature (Lond.), 247, 438–441Google Scholar
  74. Rihs, H.-P. and Peters, R. (1988). Direct measurement of nucleocytoplasmic protein transport in single living cells by laser scanning microscopy. Stud. Biophys., 127, 163–172Google Scholar
  75. Rihs, H.-P. and Peters, R. (1989). Nuclear transport kinetics depend on phosphorylation-site-containing sequences flanking the karyophilic signal of the Simian Virus 40 T-antigen. EM BO J., 8, 1479–1484Google Scholar
  76. Russo, P.S., Mustafa, ML, Tipton, D., Nelson, J. and Fontenot, D. (1988). Temperature ramped fluorescence photobleaching recovery for the direct evaluation of thermoreversible gels. Polymer Mater. Sei. Eng., 59, 605–611Google Scholar
  77. Saxton, W.M., Stemple, D.L., Leslie, R.J., Salmon, E.D., Zavotink, M. and Mclntosh, J.R. (1984). Tubulin dynamics in cultured mammalian cells. J. Cell Biol, 99, 2175–2186CrossRefPubMedGoogle Scholar
  78. Schindler, M., Koppel, D.E. and Sheek, M.P. (1980). Modulation of membrane protein lateral mobility by polyphosphates and polyamines. Proc. Natl Acad. Sei. USA, 77, 1457–1461CrossRefGoogle Scholar
  79. Schlessinger, J., Axelrod, D., Koppel, D.E., Webb, W.W. and Elson, E.L. (1977). Lateral transport of a lipid probe and of labeled proteins on a cell membrane. Science, N.Y., 195, 307– 309Google Scholar
  80. Schneider, M.B. and Webb, W.W. (1981). Measurement of submicron laser beam radii. Appl. Optics, 20, 1382–1388CrossRefGoogle Scholar
  81. Scholz, M. (1990). Anwendung der Laser-Scanning-Mikroskopie bei Mobilitäts- und Membrantransportmessungen mit der Fluoreszenz-Ausbleich-Methode. PhD Thesis, FrankfurtGoogle Scholar
  82. Scholz, M., Grosse-Johannböcke, C. and Peters, R. (1988). The measurement of intracellular transport by fluorescence microphotolysis and laser scanning microscopy. CellBiol. Int. Rep., 12, 709–727Google Scholar
  83. Scholz, M., Sauer, H., Rihs, H.-P., and Peters, R. (1989). Laser scanning microscopy to study molecular transport in single cells. SPIE (Intern. Soc. Opt. Engineering) Proceedings 1028, 160–166Google Scholar
  84. Scholz, M., Schulten, K. and Peters, R. (1985). Single-cell flux measurement by continuous fluorescence microphotolysis. Eur. Biophys. J., 13, 37–44CrossRefPubMedGoogle Scholar
  85. Schulz, B. and Peters, R. (1987). Nucleocytoplasmic protein traffic in single mammalian cells studied by fluorescence microphotolysis. Biochim. Biophys. Ada, 930, 419–431CrossRefGoogle Scholar
  86. Sheetz, M. and Koppel, D.E. (1979). Membrane damage caused by irradiation of fluorescent concanavalin A. Proc. NatlAcad. Sei. USA, 76, 3314–3317CrossRefGoogle Scholar
  87. Shields, M., La Celle, P., Waugh, R.E., Scholz, M., Peters, R. and Passow, H. (1987). Effects of intracellular Ca-Ions and proteolytic digestion of the membrane skeleton on the mechanical properties of the red blood cell membrane. Biochim. Biophys. Acta, 905, 181–194CrossRefPubMedGoogle Scholar
  88. Simon, J.R., Gough, A., Urbanik, E., Wang, F., Lanni, F., Ware, B.R. and Taylor, D.L. (1988). Analysis of rhodamine and fluorescein-labeled F-actin diffusion in vitro by fluorescence photobleaching recovery. Biophys. J., 54, 801–815PubMedCentralCrossRefPubMedGoogle Scholar
  89. Singer, S.J. and Nicolson, G.L. (1972). The fluid mosaic model of the structure of cell membranes. Science, N.Y., 175, 720–731CrossRefGoogle Scholar
  90. Smith, B.A., Clark, W.R. and McConnell, H.M. (1979). Anisotropie molecular motion on cell surfaces. Proc. Natl Acad. Sei. USA, 76, 5641–5644CrossRefGoogle Scholar
  91. Smith, B.A. and McConnell, H.M. (1978). Determination of molecular motion in membranes using periodic pattern photobleaching. Proc. Natl Acad. Sei. USA, 75, 2759–2763CrossRefGoogle Scholar
  92. Smith, L.M., McConnell, H.M., Smith, B.A. and Parce, J.W. (1981). Pattern photobleaching of fluorescent lipid vesicles using polarized laser light. Biophys. J., 33, 139–146PubMedCentralCrossRefPubMedGoogle Scholar
  93. Soumpasis, D.M. (1983). Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys. J., 41, 95–97PubMedCentralCrossRefPubMedGoogle Scholar
  94. Sowers, A.E. (1987). The long-lived fusogenic state induced in erythrocyte ghosts by electric pulses is not laterally mobile. Biophys. J., 52, 1015–1020PubMedCentralCrossRefPubMedGoogle Scholar
  95. Speksnijder, J.E., Dohmen, M.R., Tertoolen, L.G. and de Laat, S.W. (1985). Regional differences in the lateral mobility of plasma membrane lipids in a molluscan embryo. Dev. Biol, 110, 207–216CrossRefPubMedGoogle Scholar
  96. Stolpen, A.H., Pober, J.S., Brown, C.S. and Golan, D.E. (1988). Class I major histocompatibility complex proteins diffuse isotropically on immune interferon-activated endothelial cells despite anisotropic cell shape and cytoskeletal organization: Application of fluorescence photobleaching recovery with an elliptical beam. Proc. Natl Acad. Sei. USA, 85, 1844–1848CrossRefGoogle Scholar
  97. Sugarman, J.H. and Prud-Homme, R.K. (1987). Analysis of radius variations in microcapillaries using velocity of a viscous plug and fluorescence photobleaching velocity detection. Chromatography, 389, 236–239CrossRefGoogle Scholar
  98. Tamm, L.K. (1988). Lateral diffusion and fluorescence microscopic studies on a monoclonal antibody specifically bound to supported phospholipid bilayers. Biochemistry, 27, 1450–1457CrossRefPubMedGoogle Scholar
  99. Taylor, R.B., Duffus, P.H., Raff, M. C, De Petris, S. (1971). Redistribution and pinocytosis of lymphocyte surface immunoglobulin molecules induced by anti-immunoglobulin antibody. Nature New Biol, 233, 225–229CrossRefPubMedGoogle Scholar
  100. Tertoolen, L.G., Kempaar, J., Boonstrar, J., de Laat, S.W. and Ponec, M. (1988). Lateral mobility of plasma membrane lipids in normal and transformed keratinocytes. Biochem. Biophys. Res. Commun., 152, 491–496CrossRefPubMedGoogle Scholar
  101. Träuble, H. and Sackmann, E. (1972). Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. III. Structures of a steroid-lecithin system below and above the lipid-phase transition. J. Am., Chem. Soc, 94, 4499–4510CrossRefGoogle Scholar
  102. Tsuji, A., Kawasaki, K., Ohnishi, S., Merkle, H. and Kusumi, A. (1988). Regulation of band 3 mobilities in erythrocyte ghost membranes by protein association and cytoskeletal meshwork. Biochemistry, 27, 7447–7452CrossRefPubMedGoogle Scholar
  103. Tsuji, A. and Ohnishi, S. (1986). Restriction of the lateral motion of band 3 in the erythrocyte membrane by the cytoskeletal network; dependence on spectrin association state. Biochemistry, 25, 6133–6139Google Scholar
  104. Vaz, W.L. C, Derzko, Z.I. and Jacobson, K.A. (1982). In Poste, G. and Nicolson, G.L. (Eds), Membrane Reconstitution. North-Holland, Amsterdam, pp. 84–137Google Scholar
  105. Wade, M.H., Trosko, J.E. and Schindler, M. (1986). A fluorescence photobleaching assay of gap junction-mediated communication between human cells. Science, N.Y., 232, 525–528CrossRefGoogle Scholar
  106. Wang, F.W. and Wu, E.-S. (1987). Cure monitoring of epoxy resins by fluorescence recovery after photobleaching. Polymer Commun., 28, 73–75Google Scholar
  107. Weber, J. (1978). Investigation of energy transfer by means of photobleaching. Z. Phys. B, 31, 417–421CrossRefGoogle Scholar
  108. Wegener, W.A. and Rigler, R. (1984). Separation of translational and rotational contributions in solution studied using fluorescence photobleaching recovery. Biophys. J., 46, 787–793PubMedCentralCrossRefPubMedGoogle Scholar
  109. Wey, C.L., Cone, R.A. and Edidin, M.A. (1981). Lateral diffusion of rhodopsin in photoreceptor cells measured by fluorescence photobleaching and recovery. Biophys. J., 33, 225–232PubMedCentralCrossRefPubMedGoogle Scholar
  110. Wilson, T. and Sheppard, C. (1984). Theory and Practice of Scanning Optical Microscopy. Academic Press, London, pp. 1–121Google Scholar
  111. Wolf, D.E. (1988). Designing, building, and using a fluorescence recovery after photobleaching instrument. Meth. Cell Biol, 30, 271–206CrossRefGoogle Scholar
  112. Wolf, D.E., Edidin, M. and Dragsten, P.R. (1980). Effect of bleaching light on the measurements of lateral diffusion in cell membranes by fluorescence photobleaching recovery method. Proc. Natl Acad. Sei. USA, 77, 2043–2045CrossRefGoogle Scholar
  113. Wolf, D.E., Hagopian, S.S., Lewis, R.G., Voglmayr, J.K. and Fairbanks, G. (1986). Lateral regionalization and diffusion of a maturation-dependent antigen in the ram sperm plasma membrane. J. Cell Biol, 102, 1826–1831CrossRefPubMedGoogle Scholar
  114. Yechiel, E., Barenholz, Y. and Henis, Y.I. (1985). Lateral mobility and organization of phospholipids an proteins in rat myocyte membranes. Effects of aging and manipulation of lipid composition. J. Biol. Chem., 260, 9132–9136PubMedGoogle Scholar
  115. Yechiel, E. and Edidin, M. (1987). Micrometer-scale domains in fibroblast plasma membranes. J. Cell Biol, 105, 755–760CrossRefPubMedGoogle Scholar

Copyright information

© The Macmillan Press Ltd 1991

Authors and Affiliations

  • Reiner Peters
  • Manfred Scholz

There are no affiliations available

Personalised recommendations