Immunocytochemical Localization of Peroxisomal Enzymes in Rat Liver and Kidney revealed by Immunoenzyme and Immunogold Techniques

  • Sadaki Yokota


According to the manner of tissue preparation, immunocytochemical techniques are broadly divided into two groups, nonembedding and embedding techniques. In the nonembedding techniques, there are immunoferritin (Tokuyasu and Singer, 1976) and protein A-gold techniques (Geuze et al., 1981) using ultracryosections, and surface labelling of freeze fracture preparations (Pinto da Silva and Branton, 1970). According to the step by which the immunological reaction is performed, the embedding techniques could be further divided into two groups, pre-embedding and post-embedding techniques. In the former, immunoperoxidase (Nakane and Pierce, 1967) and immunoferritin (Willingham et al., 1981, 1984) were mainly used while, in the latter, the protein A-gold probes were primarily employed (Roth et al., 1978).


Acid Oxidase Immunocytochemical Localization Reaction Deposit Peroxisomal Protein Peroxisomal Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ainsworth, S. K. and Karnovsky, M. J. (1972). An ultrastructural staining method for enhancing the size and electron opacity of ferritin in thin sections. J. Histochem. Cytochem. 20, 225–229.CrossRefPubMedGoogle Scholar
  2. Åkerström, B. and Björck, L. (1986). A physiocochemical study of protein G, a molecule with unique immunoglobulin G-binding properties. J. Biol, Chem. 261, 10240–10247.Google Scholar
  3. Angermüller, S. and Fahimi, H. D. (1986). Ultrastructural cytochemical localization of uricase in peroxisomes of rat liver. J. Histochem. Cytochem. 34, 159–165.CrossRefPubMedGoogle Scholar
  4. Avrameas, S. and Ternyck, T. (1971). Peroxidase labelled antibody and Fab conjugates with enhanced intracellular penetration. Immunochemistry 8, 1175–1179.CrossRefPubMedGoogle Scholar
  5. Barrett, M. and Heidger, P. (1975). Microbodies of the rat renal tubule: ultrastructural and cytochemical investigations. Cell Tissue Res. 157, 283–305.CrossRefPubMedGoogle Scholar
  6. Baskin, D. G., Erlandsen, S. L. and Parsons, J. A. (1979). Immunocytochemistry with osmium-fixed tissue. I. Light microscopic localization of growth hormone and prolactin with the unlabeled antibody-enzyme method. J. Histochem. Cytochem. 27, 867–872.CrossRefPubMedGoogle Scholar
  7. Beard, M. E. and Novikoff, A. B. (1969). Distribution of peroxisomes (microbodies) in the nephron of the rat. A cytochemical study. J. Cell Biol. 42, 501–518.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Bendayan, M. (1982). Double immunocytochemical labeling applying the protein A-gold technique. J. Histochem. Cytochem. 30, 81–85.CrossRefPubMedGoogle Scholar
  9. Bendayan, M. and Reddy, J. K. (1982). Immunocytochemical localization of catalase and heat-labile enoyl-CoA hydratase in the livers of normal and peroxisome and proliferator-treated rats. Lab. Invest. 47, 364–369.PubMedGoogle Scholar
  10. Bendayan, M. and Zollinger, M. (1983). Ultrastructural localization of antigenic sites on osmium-fixed tissues applying the protein A-gold technique. J. Histochem. Cytochem. 31, 101–109.CrossRefPubMedGoogle Scholar
  11. Bernhard, W. and Leduc, E. H. (1967). Ultrathin frozen sections. I. Methods and ultrastructural preservation. J. Cell. Biol. 34, 757–771.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Childs, G. and Unabia, G. (1982). Application of avidin-biotin-peroxidase complex (ABC) method to the light microscopic localization of pituitary hormones. J. Histochem. Cytochem. 30, 713–716.CrossRefPubMedGoogle Scholar
  13. Erlandsen, S. L., Parsons, J. A. and Rodning, C. B. (1979). Technical parameter of immunostaining of osmicated tissue in epoxy-section. J. Histochem. Cytochem. 27, 1286–1289.CrossRefPubMedGoogle Scholar
  14. Fahimi, H. D., Reinecke, A., Sujatta, M., Yokota, S., Ozel, M., Hartig, F. and Stegmeier, K. (1982). The short- and long-term effects of bezafibrate in the rat. Ann. N.Y. Acad. Sci. 386, 111–133.CrossRefPubMedGoogle Scholar
  15. Forsgreen, A. and Sjöquist, J. (1966). Protein A from S. aureus: Pseudoimmune reaction with human γ-globulins. J. Immunol. 97, 822–827.Google Scholar
  16. Fukushima, M., Aihara, Y. and Ichiyama, A. (1978). Immunochemical studies on induction of rat liver mitochondrial serine:pyruvate aminotransferase by glucagon. J. Biol. Chem. 253, 1187–1194.PubMedGoogle Scholar
  17. Geuze, H. J., Slot, J. W., van der Ley, P. A. and Scheffer, R. C. (1981). Use of colloidal gold particles in double-labeling immunoelectron microscopy of ultrathin frozen tissue sections. J. Cell. Biol. 89, 653–665.CrossRefPubMedGoogle Scholar
  18. Hashida, S., Imagawa, M., Inoue, S., Ruan, K.-H. and Ishikawa, E. (1984). More useful maleimide compounds for the conjugation of Fab’ to horseradish peroxidase through thiol groups in the hinge. J. Appl. Biochem. 6, 56–63.PubMedGoogle Scholar
  19. Hashimoto, T. (1982). Individual peroxisomal β-oxidation enzymes. Ann. N.Y. Acad. Sci. 386, 5–12.CrossRefPubMedGoogle Scholar
  20. Keller, G. A., Tokuyasu, K. T., Dutton, A. H. and Singer, S. J. (1984). An improved procedure for immunoelectron microscopy: ultrathin plastic embedding of immunolabeled ultrathin frozen sections. Proc. Natl. Acad. Sci. USA 81, 5744–5747.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Keller, G. A., Barton, M. C., Shapiro, D. J. and Singer, S. J. (1985). 3-Hydroxy-3-methylglutaryl coenzyme A reductase is present in peroxisomes in normal rat liver cells. Proc. Natl. Acad. Sci. USA 82, 770–774.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Keller, G.-A., Gould, S. J. and Subramani, S. (1987). Firefly luciferase is targeted to peroxisomes in mammalian cells. Proc. Natl. Acad. Sci. USA 84, 3264–3268.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Lazarow, B. P. (1977). Three hypolipidemic drugs increase hepatic palmitoyl-coenzyme A oxidation in the rat. Science, 197, 580–581.CrossRefPubMedGoogle Scholar
  24. Lazarow, B. P. and de Duve, C. (1976). A fatty acyl-CoA oxidizing system in rat liver peroxisomes: enhancement by Clofibrate, a hypolipidemic drug. Proc. Natl. Acad. Sci. USA 73, 2043–2046.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Litwin, J. A., Yokota, S., Hashimoto, T. and Fahimi, H. D. (1984). Light microscopic immunocytochemical demonstration of peroxisomal enzymes in epon sections. Histochemistry 81, 15–22.CrossRefPubMedGoogle Scholar
  26. Litwin, J. A. and Beier, K. (1987). Immunogold localization of peroxisomal enzymes in Epon-embedded liver tissue. Enhancement of sensitivity by etching with ethanolic sodium hydroxide. Histochemistry 88, 193–196.CrossRefGoogle Scholar
  27. Maunsbach, A. B. (1966). Observations on the ultrastructure and acid phosphatase activity of the cytoplasmic bodies in the rat kidney proximal tubule cells. With a comment on their classification. J. Ultrastruct. Res., 16, 197–238.CrossRefPubMedGoogle Scholar
  28. McLean, I. W. and Nakane, P. K. (1974). Periodate-lysine-paraformaldehyde fixative: a new fixative for immunoelectron microscopy. J. Histochem. Cytochem. 22, 1077–1083.CrossRefPubMedGoogle Scholar
  29. Miyazawa, S., Hashimoto, T. and Yokota, S. (1985). Identity of long-chain acyl-coenzyme A synthetase of microsomes, mitochondria, and peroxisomes in rat liver. J. Biochem. (Tokyo) 98, 723–733.Google Scholar
  30. Nakane, P. K. and Pierce, G. B. (1967). Enzyme labelled antibodies for light and electron microscopic localization of tissue antigens. J. Cell Biol. 33, 307–318.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Noguchi, T., Okuno, E. and Kido, R. (1976). Identity of isoenzyme 1 of histidine-pyruvate aminotransferase with serine:pyruvate aminotransferase Biochem. J. 159, 607–613.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Novikoff, A. B. and Novikoff, P. M. (1973). Microperoxisomes. J. Histochem. Cytochem. 21, 963–966.CrossRefPubMedGoogle Scholar
  33. Pinto da Silva, P. and Branton, D. (1970). Membrane splitting in freeze-etching. Covalently labeled ferritin as a membrane marker. J. Cell Biol. 45, 598–605.PubMedCentralCrossRefGoogle Scholar
  34. Reddy, J. K. and Kumar, N. S. (1977). The peroxisome proliferation-associated polypeptide in rat liver. Biochem. Biophys. Res. Commun. 77, 824–829.CrossRefPubMedGoogle Scholar
  35. Rodning, C. B., Erlandsen, S. L., Coulter, H. D. and Wilson, I. D. (1980). Immunohistochemical localization of IgA antigens in sections embedded in epoxy resin. J. Histochem. Cytochem. 28, 199–205.CrossRefPubMedGoogle Scholar
  36. Roth, J. (1982). The protein A-gold (pAg) technique—A qualitative and quantitative approach for antigen localization on thin sections. In Bullock, G. R. and Petrusz, P. (eds.), Techniques in Immunocytochemistry, Academic Press, London, pp. 108–133.Google Scholar
  37. Roth, J., Bendayan, M. and Orci, L. (1978). Ultrastructural localization of intracellular antigens by the use of protein A-gold complex. J. Histochem. Cytochem. 26, 1074–1084.CrossRefPubMedGoogle Scholar
  38. Roth, J., Bendayan, M., Carlemalm. E., Villiger, W. and Garavito, M. (1981). Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J. Histochem. Cytochem. 29, 663–671.CrossRefPubMedGoogle Scholar
  39. Rowsell, E. V., Snell, K., Carnie, J. A. and Al-Tai, A. H. (1969) Liver lalanine-glyoxylate and l-serine-pyruvate aminotransferase activities. An apparent association with gluconeogenesis. Biochem. J. 115, 1071–1073.PubMedCentralCrossRefPubMedGoogle Scholar
  40. Schachter, M., Peret, M. W., Billing, A. G. and Wheeler, G. D. (1983). Immunolocalization of the protease kallikrein in the colon. J. Histochem. Cytochem. 31, 1255–1260.CrossRefPubMedGoogle Scholar
  41. Slot, J. W. and Geuze, H. J. (1981). Sizing of protein A-colloidal gold probes for immunoelectron microscopy. J. Cell Biol. 90, 533–536.CrossRefPubMedGoogle Scholar
  42. Slot, J. W. and Geuze, H. J. (1985). A new method of preparing gold probes for multiple-labeling cytochemistry. Eur. J. Cell Biol. 38, 87–93.PubMedGoogle Scholar
  43. Tokuyasu, K. T. (1980). Immunocytochemistry on ultrathin frozen sections. Histochem. J. 12, 381–403.CrossRefPubMedGoogle Scholar
  44. Tokuyasu, K. T. and Singer, S. J. (1976). Improved procedures for immunoferritin labeling of ultrathin frozen sections. J. Cell Biol. 71, 894–906.CrossRefPubMedGoogle Scholar
  45. Usuda, N., Yokota, S., Hashimoto, T. and Nagata, T. (1986). Immunocytochemical localization of d-amino acid oxidase in the central clear matrix of rat kidney peroxisomes. J. Histochem. Cytochem. 34, 1709–1718.CrossRefPubMedGoogle Scholar
  46. Vassy, J., Rissel, M., Kraemer, M., Foucrier, J. and Guillouzo, A. (1984). Ultrastructural indirect immunolocalization of transferrin in cultured rat hepatocytes permeabilized with saponin. J. Histochem. Cytochem. 32, 538–540.CrossRefPubMedGoogle Scholar
  47. Willingham, M. C., Keen, J. H. and Pastan, I. (1981). Ultrastructural immunocytochemical localization of clathrin in cultured fibroblasts. Exp. Cell Res. 132, 329–338.CrossRefPubMedGoogle Scholar
  48. Willingham, M. C., Hanover, J. A., Dickson, R. B. and Pastan, I. (1984). Morphologic characterization of the pathway of transferrin endocytosis and recycling in human KB cells. Proc. Natl. Acad. Sci. USA 81, 175–179.PubMedCentralCrossRefPubMedGoogle Scholar
  49. Yokota, S. (1986). Quantitative immunocytochemical studies on differential induction of serine:pyruvate aminotransferase in mitochondria and peroxisomes of rat liver cells by administration of glucagon or di-(2-ethylhexyl) phthalate. Histochemistry 84, 145–155.CrossRefGoogle Scholar
  50. Yokota, S. (1987). Die immunocytochemische Lokalisation der Sulfitoxydase in den Mitochondrien der Rattenleber-Parenchymzellen. Yamanashi Med. J. 2, 137–143.Google Scholar
  51. Yokota, S. (1988). Effect of particle size on labeling density for catalase in protein A-gold immunocytochemistry. J. Histochem. Cytochem. 36, 107–109.CrossRefPubMedGoogle Scholar
  52. Yokota, S. and Nagata, T. (1974a). Studies on mouse urate oxidase. III. Fine localization of urate oxidase in mouse liver cells revealed by means of ultracryotomy immunoferritin technique. Histochemistry 39, 243–250.CrossRefPubMedGoogle Scholar
  53. Yokota, S. and Nagata, T. (1974b). Ultrastructural localization of catalase on ultracryotomic sections of mouse liver by ferritin-conjugated antibody technique. Histochemistry 40, 165–174.CrossRefPubMedGoogle Scholar
  54. Yokota, S. and Fahimi, H. D. (1980). Immunocytochemical localization of catalase in rat liver. J. Histochem. Cytochem. 29, 805–812.CrossRefGoogle Scholar
  55. Yokota, S. and Fahimi, H. D. (1981). Immunocytochemical localization of albumin in the secretory apparatus of rat liver parenchymal cells. Proc. Natl. Acad. Sci. USA 78, 4970–4974.PubMedCentralCrossRefPubMedGoogle Scholar
  56. Yokota, S. and Fahimi, H. D. (1983). Immunoelectron microscopic localization of acyl-CoA oxidase in peroxisomes of rat liver and kidney. Ann. N.Y. Acad. Sci. 386, 491–494.CrossRefGoogle Scholar
  57. Yokota, S. and Oda, T. (1985). Immunocytochemical demonstration of serine:pyruvate aminotransferase in peroxisomes and mitochondria of rat kidney. Histochemistry 83, 81–85.CrossRefPubMedGoogle Scholar
  58. Yokota, S., Ichikawa, K. and Hashimoto, T. (1985a). Light and electron microscopic localization of l-alpha-hydroxyacid oxidase in rat kidney revealed by immunocytochemical technique. Histochemistry 82, 25–32.CrossRefPubMedGoogle Scholar
  59. Yokota, S., Tsuji, H. and Kato, K. (1985b). Localization of cathepsin D in rat liver. Immunocytochemical study using post-embedding immunoenzyme and protein A-gold techniques. Histochemistry 82, 141–148.CrossRefPubMedGoogle Scholar
  60. Yokota, S., Tjusi, H. and Kato K. (1985c). Immunocytochemical localization of cathepsin D in lysomes of cortical collecting tubule cells of the rat kidney. J. Histochem. Cytochem. 33, 191–200.CrossRefPubMedGoogle Scholar
  61. Yokota, S., Tsuji, H. and Kato, K. (1986a). Immunocytochemical localization of cathepsin H in rat kidney. Light and electron microscopic study. Histochemistry 85, 223–230.CrossRefPubMedGoogle Scholar
  62. Yokota, S., Tsuji, H. and Kato, K. (1986b). Immunocytochemical localization of cathepsin B in rat kidney. I. Light microscopic study using the indirect immunoenzyme technique. J. Histochem. Cytochem. 34, 891–897.CrossRefPubMedGoogle Scholar
  63. Yokota, S. and Fahimi, H. D. (1987). Intracellular transport of albumin through the secretory apparatus of rat liver parenchymal cells. An immunocytochemical study. Cell. Struct. Funct. 12, 251–264.CrossRefPubMedGoogle Scholar
  64. Yokota, S., Völkl, A., Hashimoto, T. and Fahimi, H. D. (1987). In Fahimi, H. D. and Sies, H. (eds), Peroxisomes in Biology and Medicine, Springer-Verlag, Berlin and Heidelberg, pp. 115–127.CrossRefGoogle Scholar
  65. Yokota, S. and Kato, K. (1988a). Immunocytochemical localization of cathepsins B and H in rat liver. Histochemistry, 88, 97–103.CrossRefGoogle Scholar
  66. Yokota, S. and Kato, K. (1988b). Involvement of cathepsins B and H in lysosomal degradation of horseradish peroxidase endocytosed by the proximal tubule cells of the rat kidney. II. Immunocytochemical studies using protein A-gold technique applied to conventional and serial sections. Anat. Rec. 221, 791–801.CrossRefPubMedGoogle Scholar
  67. Zamboni, L. and De Martino, C. (1967). Buffered picric acid-formaldehyde: a new rapid fixative for electron microscopy. J. Cell Biol. 35, 148A.Google Scholar

Copyright information

© The Editor and Contributors 1989

Authors and Affiliations

  • Sadaki Yokota

There are no affiliations available

Personalised recommendations