Recent Developments in the use of Liposomes in in vitro Diagnostic Assays

  • Viola T. Kung
  • Eleanor Canova-Davis


Phospholipids can be dispersed in aqueous media to yield closed vesicles that are composed of one or a series of compartments separated by concentric lipid bilayers (Bangham et al., 1965). These vesicles, or liposomes, were originally studied as models for biological membranes. Liposomes can carry molecules on their exterior surface or in their bilayer lipid membrane. In addition, liposomes can entrap aqueous solutions containing various water-soluble components of a wide range of molecular masses. Liposomes may be formed from natural molecules which can be metabolized in the body, thus having an advantage as carrier vesicles in vivo. Liposomes have been studied as carriers of different solutes; e.g. antibiotics (Gabizon et al., 1982), anti-tumour drugs (Juliano and Lopez-Berestein, 1985; Kirby and Gregoriadis, 1983), cytotoxic agents (Heath et al., 1983), immunomodulators (Fogler et al., 1983), enzymes (Gregoriadis et al., 1971), proteins (Gregoriadis and Allison, 1974) or nucleic acids (Fraley et al., 1980). As drug carriers, liposomes have been shown to improve therapeutic benefits by reducing the toxicity, but not the potency, of drugs (Gabizon et al., 1982; Juliano and Lopez-Berestein, 1985). Antibody-bearing liposomes were also shown to increase the specific toxicity of a cytotoxic agent (Heath et al., 1983). The potential role of liposomes as drug carriers has attracted considerable interest and has been discussed extensively in several reviews (Gregoriadis, 1981; Kaye, 1981; Kimelberg and Mayhew, 1978; Tyrell et al., 1976). The ability of liposomes to carry antigens or antibodies on their surface and to entrap reporter molecules in their aqueous compartment make them potentially useful in in vitro diagnostics. In this review, we will describe the recent developments in the use of liposomes in immunoassays.


Liposome Preparation Reporter Molecule Multilamellar Liposome Enzyme Alkaline Phosphatase Systemic Lupus Erythromatosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alving, C. R., Fowble, J. W. and Joseph, K. C. (1974a). Comparative properties of four galactosyl lipids as antigens in liposomes. Immunochemistry, 11, 475–481.CrossRefPubMedGoogle Scholar
  2. Alving, C. R., Joseph, K. C. and Wistar, R. (1974b). Influence of membrane composition on the interaction of a human monoclonal “anti-Forssman” immunoglobulin with liposomes. Biochemistry, 13, 4818–4824.CrossRefPubMedGoogle Scholar
  3. Axelsson, B., Eriksson, H., Borrebeck, C., Mattiasson, B. and Sjögren, H. O. (1981). Liposome immune assay (LIA). Use of membrane antigens inserted into labelled lipid vesicles as targets in immune assays. J. Immunol. Meth., 41, 351–363.CrossRefGoogle Scholar
  4. Bangham, A. D., Standish, M. M. and Watkins, J. C. (1965). Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 13, 238–252.CrossRefPubMedGoogle Scholar
  5. Braman, J. C., Broeze, R. J., Bowden, D. W., Myles, A., Fulton, T. R., Rising, M., Thurston, J., Cole, F. X. and Vovis, G. F. (1984). Enzyme membrane immunoassay (EMIA). Biotechnology, 2, 349–355.CrossRefGoogle Scholar
  6. Canova-Davis, E., Redemann, C. T., Vollmer, Y. P. and Kung, V. T. (1986). Use of a reversed-phase evaporation vesicle formulation for a homogeneous liposome immunoassaay. Clin. Chem., 32, 1687–1691.PubMedGoogle Scholar
  7. Carlson, J., Drevin, H. and Axen, R. (1978). Protein thiolation and reversible protein-protein conjugation. Biochem. J., 173, 723–737.CrossRefGoogle Scholar
  8. Chubick, A., Sontheimer, R. D., Gilliam, J. N. and Ziff, M. (1978). An appraisal of test for native DNA antibodies in connective tissue diseases. Ann. Intern, Med., 89, 186–192.CrossRefGoogle Scholar
  9. Cohen, B., Fox, J., Hedaya, E. and Lippman, V. (1986). The unusual chemiluminescent properties of liposome entrapped peroxidase and its potential analytical application. Clin. Chem., 32, 1065.Google Scholar
  10. Cuatrecasas, P. and Parikh, I. (1972). Adsorbants for affinity chromatography. Use of N-hydroxysuccinimide esters of agarose. Biochemistry, 11, 2291–2299.CrossRefPubMedGoogle Scholar
  11. Cullis, P. R. and DeKruijff, B, (1979). Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta, 559, 399–420.CrossRefPubMedGoogle Scholar
  12. Davis, B. D., Dulbecco, R., Eisen, H. N. and Ginsberg, H. S. (1980). In: Microbiology, Harper and Row, Hogerstown, pp. 452–466.Google Scholar
  13. Deamer, D. and Bangham, A. D. (1976). Large volume liposomes by an ether vaporization method. Biochim. Biophys. Acta, 443, 629–634.CrossRefPubMedGoogle Scholar
  14. Derksen, J. T. P. and Scherphof, G. L. (1985). An improved method for the covalent coupling of proteins to liposomes. Biochim. Biophys. Acta, 814, 151–155.CrossRefGoogle Scholar
  15. Endoh, H. G., Suzuki, Y. and Hashimoto, Y. (1981). Antibody coating of liposomes with 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide and the effect on target specificity. J. Immunol. Meth., 44, 79–85.CrossRefGoogle Scholar
  16. Enoch, H. G. and Strittmatter, P. (1979). Formation and properties of 1000 Å-diameter, single-bilayer phospholipid vesicles. Proc. Natl. Acad. Sci. USA, 76, 145–149.PubMedCentralCrossRefPubMedGoogle Scholar
  17. Fan, S., Hedaya, E., Hwang, D., Mak, A., Malin, M., Oraivej, N., Schwarzberg, M., Scott, M. E. and Seman, K. (1985). Liposome immunoassay: a general approach to colorimetric homogeneous immunoassays on the Technicon RA-1000™ system—phenytoin and phenobarbital. Clin. Chem., 31, 909.Google Scholar
  18. Fogler, W. E., Talmadge, J. E. and Fidler, I. J. (1983). The activation of tumoricidal properties in macrophages of endotoxin responder and non-responder mice by liposome-encapsulated immunomodulators. J. Reticuloendotheliar Soc, 33, 165–174.Google Scholar
  19. Fraley, R., Subramani, S., Berg, P. and Papahadjopoulos, D. (1980). Introduction of liposome-encapsulated SV40 DNA into cells. J. Biol. Chem., 255, 10431–10435.PubMedGoogle Scholar
  20. Freytag, J. W. and Litchfield, W. J. (1984). Liposome-mediated immunoassays for small haptens (digoxin) independent of complement. J. Immunol. Meth., 70, 133–140.CrossRefGoogle Scholar
  21. Gabizon, A., Dagan, A., Goren, Y., Barenholz, Y. and Fuks, Z. (1982). Liposomes as in vivo carriers of adriamycin: reduced cardiac uptake and preserved antitumor activity in mice. Cancer Research, 42, 4734–4739.PubMedGoogle Scholar
  22. Graf, L. and Rapport, M. M. (1974). Serological activity of glycosphingolipids: effect of chain length of the fatty acid residue in cytolipin H. Chem. Phys. Lipids, 13, 367–371.CrossRefPubMedGoogle Scholar
  23. Gregoriadis, G. (1981). Targeting of drugs: implications in medicine. Lancet, 2, 241–247.CrossRefPubMedGoogle Scholar
  24. Gregoriadis, G., Leathwood, P. D. and Ryman, B. E. (1971). Enzyme entrapment in liposomes. FEBS Lett., 14, 95–99.CrossRefPubMedGoogle Scholar
  25. Gregoriadis, G. and Allison, A. C. (1974). Entrapment of proteins in liposomes prevents allergic reactions in pre-immunized mice. FEBS Lett., 45, 71–74.CrossRefPubMedGoogle Scholar
  26. Haga, M., Itagaki, H., Sugawara, S. and Okano, T. (1980). Liposome immunosensor for theophylline. Biochem. Biophys. Res. Commun., 95, 187–192.CrossRefPubMedGoogle Scholar
  27. Haga, M., Sugawara, S. and Itagaki, H. (1981). Drug sensor: liposome immunosensor for theophylline. Anal. Biochem., 118, 286–293.CrossRefPubMedGoogle Scholar
  28. Haxby, J. A., Kinsky, C. B and Kinsky, S. C. (1968). Immune response of a liposomal model membrane. Proc. Natl. Acad. Sci. USA, 61, 300–307.PubMedCentralCrossRefPubMedGoogle Scholar
  29. Heath, T. D., Fraley, R. T. and Papahadjopoulos, D. (1980). Antibody targeting of liposomes: cell specificity obtained by conjugation of F(ab’)2 to vesicle surface. Science, 210, 539–541.CrossRefPubMedGoogle Scholar
  30. Heath, T. D., Macher, B. A. and Papahadjopoulos, D. (1981). Covalent attachment of immunoglobulins to liposomes via glycosphingolipids. Biochim. Biophys. Acta, 640, 66–81.CrossRefPubMedGoogle Scholar
  31. Heath, T. D., Montgomery, J. A., Piper, J. R. and Papahadjopoulos, D. (1983). Antibody-targeted liposomes: increase in specific toxicity of methotrexate-γ-aspartate. Proc. Natl. Acad. Sci. USA, 80, 1377–1981.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Heath, B. P., Martin, F. and Huang, A. (1986). The interaction of Sendai virus with target cells: basis of novel homogeneous immunoassay. Biophys. J., 49, 119a.Google Scholar
  33. Ho, R. J. Y. and Huang, L. (1985). Interactions of antigen-sensitized liposomes with immobilized antibody: A homogeneous solid-phase immunoliposome assay. J. Immunol., 134, 4035–4040.PubMedGoogle Scholar
  34. Huang, A., Tsao, Y. S., Kennel, S. J. and Huang, L. (1982). Characterization of antibody covalently coupled to liposomes. Biochim. Biophys. Acta, 716, 140–150.CrossRefPubMedGoogle Scholar
  35. Huang, C. H. (1969). Study on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry, 8, 344–352.CrossRefPubMedGoogle Scholar
  36. Hughes-Jones, N. C. (1977). Functional affinity constants of the reaction between 125I-labelled C1q and C1q binders and their use in the measurement of plasma C1q concentrations. Immunology, 32, 191–198.PubMedCentralPubMedGoogle Scholar
  37. Humphries, G. K. and McConnell, H. M. (1974). Immune lysis of liposomes and erythrocyte ghosts loaded with spin label. Proc. Natl. Acad. Sci. USA, 71, 1691–1694.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Ishimori, Y., Yasuda, T., Tsumita, T., Notsuki, M., Koyama, M. and Tadakuma, T. (1984). Liposome immune lysis assay (LILA): a simple method to measure anti-protein antibody using protein antigen-bearing liposomes. J. Immunol. Meth., 75, 351–360.CrossRefGoogle Scholar
  39. Ishimori, Y., Hatoh, M. and Koyama, M. (1986). Homogeneous determination of human alpha-fetoprotein (AFP) with liposome-immune-lysis assay (LILA). Clin. Chem., 32, 1067.Google Scholar
  40. Janoff, A. S., Carpenter-Green, S., Weiner, A. L., Scibold, J., Weissman, G. and Ostro, M. J. (1983). Novel liposome composition for a rapid colorimetric test for systemic lupus erythromatosis. Clin. Chem., 29, 1587–1592.PubMedGoogle Scholar
  41. Juliano, R. L. and Lopez-Berestein, G. (1985). New lives for old drugs: liposomal drug delivery system reduces the toxicity but not the potency of certain chemotherapeutic agents. Pharmacy International, 6, 164–167.Google Scholar
  42. Kaye, S. B. (1981). Liposomes—problems and promise as selective drug carriers. Cancer Treat. Rev., 8, 27–50.CrossRefPubMedGoogle Scholar
  43. Kimelberg, H. K. and Mayhew, E. G. (1979). Properties and biological effects of liposomes and their uses in pharmacology and toxicology. CRC Crit. Rev. Toxicol., 6, 25–79.CrossRefGoogle Scholar
  44. Kinsky, S. C. (1974). Preparation of liposomes and a spectrophotometric assay for release of trapped glucose marker. Meth. Enzymology, 32B, 501–513.CrossRefGoogle Scholar
  45. Kinsky, S. C., Haxby, J. A., Zopf, D. A., Alving, C. R. and Kinsky, C. B. (1969). Complement-dependent damage to liposomes prepared from pure lipids and Forssman hapten. Biochemistry, 8, 4149–4158.CrossRefPubMedGoogle Scholar
  46. Kinsky, S. C., Hashimoto, K., Loader, J. E. and Benson, A. L. (1984). Synthesis of N-hydroxysuccinimide esters of phosphatidylethanolamine and some properties of liposomes containing these derivatives. Biochim. Biophys. Acta, 769, 543–550.CrossRefGoogle Scholar
  47. Kirby, C. and Gregoriadis, G. (1983). The effect of lipid composition of small unilamellar liposomes containing melphalan and vincristine on drug clearance after injection into mice. Biochem. Pharm., 32, 609–615.CrossRefPubMedGoogle Scholar
  48. Kung, V. T., Maxin, P. E., Veltri, R. W. and Martin, F. J. (1985). Antibody-bearing liposomes improve agglutination of latex particles used in clinical diagnostic assays. Biochim. Biophys. Acta, 839, 105–109.CrossRefGoogle Scholar
  49. Kung, V. T. and Redemann, C. T. (1986). Synthesis of carboxyacyl derivatives of phosphatidylethanolamine and use as an efficient method for conjugation of protein to liposomes. Biochim. Biophys. Acta, 862, 435–439.CrossRefPubMedGoogle Scholar
  50. Kung, V. T., Vollmer, Y. P. and Martin, F. J. (1986). Large liposome agglutination technique for the serological detection of syphilis. J. Immunol. Meth., 90, 189–196.CrossRefGoogle Scholar
  51. Lafer, E. M., Rauch, J., Andrejewski, C., Mudd, D., Furie, B., Schwartz, R. S. and Stollar, B. D. (1981). Polyspecific monoclonal lupus autoantibodies reactive with both polynucleotides and phospholipids. J. Exp. Med., 153, 897–909.CrossRefPubMedGoogle Scholar
  52. Leserman, L. D., Marchy, P. and Barbet, J. (1981). Cell-specific drug transfer from liposomes bearing monoclonal antibodies. Nature, 293, 226–228.CrossRefPubMedGoogle Scholar
  53. Litchfield, W. J., Freytag, J. W. and Adamich, M. (1984). Highly sensitive immunoassays based on use of liposomes without complement. Clin. Chem., 30, 1441–1445.PubMedGoogle Scholar
  54. Martin, F. J., Hubbell, W. L. and Papahadjopoulos, D. (1981). Immunospecific targeting of liposomes to cells: a novel and efficient method for covalent attachment of Fab’ fragments via disulfide bonds. Biochemistry, 20, 4229–4238.CrossRefPubMedGoogle Scholar
  55. Martin, F. J. and Papahadjopoulos, D. (1982). Irreversible coupling of immunoglobulin fragments to preformed vesicles. J. Biol. Chem., 257, 286–288.PubMedGoogle Scholar
  56. Martin, F. J. and Kung, V. T. (1985). Binding characteristics of antibody bearing liposomes. Ann. New York Acad. Sci., 446, 443–456.CrossRefGoogle Scholar
  57. Mayer, M. M. (1967). In Kabot, E. A. and Mayer, M. M. (eds.), Experimental Immunochemistry, C. C. Thomas Press, Springfield, pp. 133–240.Google Scholar
  58. Milsmann, M. H. W., Schwendener, R. A. and Weder, H. G. (1978). The preparation of large single bilayer liposomes by a fast and controlled dialysis. Biochim. Biophys. Acta, 512, 147–155.CrossRefPubMedGoogle Scholar
  59. Mimms, L. T., Zampighi, G. and Nozaki, Y. (1981). Phospholipid vesicle formation and transmembrane protein incorporation using octyl glucoside. Biochemistry, 20, 833–840.CrossRefPubMedGoogle Scholar
  60. O’Connell, J. P., Campbell, R. L., Fleming, B. M., Mercolino, T. J., Johnson, M. D. and McLaurin, D. A. (1985). A highly sensitive immunoassay system involving antibody-coated tubes and liposome-entrapped dye. Clin. Chem., 31, 1424–1426.PubMedGoogle Scholar
  61. Papahadjopoulos, D. and Watkins, J. C. (1967). Phospholipid model membranes. II. Permeability properties of hydrated liquid crystals. Biochim. Biophys. Acta, 135, 639–652.CrossRefPubMedGoogle Scholar
  62. Papahadjopoulos, D., Heath, T., Martin, F., Fraley, R. and Straubinger, R. (1982). In Gregoriadis, Y., Senior, J. and Trout, A. (eds.), Targeting of Drugs, Plenum Publishing Corp., pp. 375–391.CrossRefGoogle Scholar
  63. Pecht, I., Ehrenberg, B., Calef, E. and Arnon, R. (1977). Conformational changes and complement activation induced upon antigen binding to antibodies. Biochem. Biophys. Res. Commun., 74, 1302–1310.CrossRefPubMedGoogle Scholar
  64. Piran, U., Uretsky, L., Law, S. J. and Stastny, M. (1986). Homogeneous liposome immunoassay for thyroxine on automated chemistry analyzers. Clin. Chem., 32, 1167.Google Scholar
  65. Ploussard, J. H. and Sloyer, J. L. (1984). Antibody screening for group A streptococcal antibodies: an overview and comments on the LEAP STREP test. Adv. Therapy, 1, 129–135.Google Scholar
  66. Rand, R. P., Tinker, D. O. and Fast, P. G. (1971). Polymorphism of phosphatidylethanolamines from two natural sources. Chem. Phys. Lipids, 6, 333–342.CrossRefPubMedGoogle Scholar
  67. Reiss-Husson, F. (1967). Structure of liquid-crystalline phase of different phospholipids, monoglycerides and sphingolipids, both anhydrous and in presence of water. J. Mol. Biol., 25, 363–382.CrossRefPubMedGoogle Scholar
  68. Saunders, L., Perrin, J. and Gammack, D. B. (1962). Ultrasonic irradiation of some pholpholipid sols. J. Pharm. Pharmacol., 14, 567–572.CrossRefPubMedGoogle Scholar
  69. Schoenfeld, Y., Rauch, J., Massicotte, H., Datta, S. K., Andre-Schwartz. J., Stollar, B. D. and Schwartz, R. S. (1983). Polyspecificity of monoclonal lupus autoantibodies produced by human-human hybridomas. N. Engl. J. Med., 308, 414–420.CrossRefGoogle Scholar
  70. Six. H. R., Uemura, K. and Kinsky, S. C. (1973). Effect of immunoglobulin class and affinity on the initiation of complement-dependent damage to liposomal model membranes sensitized with dinitrophenylated phospholipids. Biochemistry, 12, 4003–4011.CrossRefPubMedGoogle Scholar
  71. Six, H. R., Young, W. W., Jr., Uemura, K. and Kinsky, S. C. (1974). Effect of antibody-complement on multiple vs. single compartment liposomes. Application of a fluorometric assay for following changes in liposomal permeability. Biochemistry, 13. 4050–4058.CrossRefPubMedGoogle Scholar
  72. Smolarsky, M., Teitelbaum, D., Sela, M. and Gitler, C. (1977). A simple fluorescent method to determine complement-mediated liposome immune lysis. J. Immunol. Meth., 15, 255–265.CrossRefGoogle Scholar
  73. Szoka, F., Jr., and Papahadjopoulos, D. (1978). Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. USA, 75, 4194–4198.PubMedCentralCrossRefPubMedGoogle Scholar
  74. Szoka, F., Jr., and Papahadjopoulos, D. (1980). Comparative properties and methods of preparation of lipid vesicles (liposomes). Ann. Rev. Biophys. Bioeng., 9, 467–508.CrossRefGoogle Scholar
  75. Szoka, F., Jr., and Papahadjopoulos, D. (1981). In Knight, C. G. (ed.), Liposomes: From Physical Structure to Therapeutic Applications, Elsevier/North-Holland Biomedical Press, pp. 52–82.Google Scholar
  76. Tan, C. T., Chan, S. W. and Hsia, J. C. (1981). Membrane immunoassay: a spin membrane immunoassay for thyroxine. Meth. Enzymology, 74, 152–161.CrossRefGoogle Scholar
  77. Thoreil, J. I. and Johansson, B. G. (1971). Enzymatic iodination of polypeptides with 125I to high specific activity. Biochim. Biophys. Acta, 251, 363–369.CrossRefGoogle Scholar
  78. Torchilin, V. P., Goldmacher, V. S. and Smirnov, V. N. (1978). Comparative studies on covalent immobilization of protein molecules on the surface of liposomes. Biochem. Biophys. Res. Commun., 85, 983–990.CrossRefPubMedGoogle Scholar
  79. Torchilin, V. P., Khaw, B. A., Smirnov, V. N. and Haber, E. (1979). Preservation of antimyosin antibody after covalent coupling to liposomes. Biochem. Biophys. Res. Commun., 89, 1114–1119.CrossRefPubMedGoogle Scholar
  80. Tyrell, D. A., Heath, T. D., Colley, C. M. and Ryman, B. E. (1976). New aspects of liposomes. Biochim. Biophys. Acta, 457, 259–302.CrossRefGoogle Scholar
  81. Uemura, K., Hattori, H., Kitazawa, N. and Taketomi, T. (1982). Immunochemical determination of Forssman and blood group A-active glycolipids in human gastric mucosa by inhibition assay of liposome lysis. J. Immunol. Meth., 53, 221–232.CrossRefGoogle Scholar
  82. Wei, R., Alving, C. R., Richards, R. L. and Copeland, E. S. (1975). Liposome spin immunoassay: a new sensitive method for detecting lipid substances in aqueous media. J. Immunol. Meth., 9, 165–170.CrossRefGoogle Scholar
  83. Weinstein, J. N., Yoshikami, S., Henkart, P., Blumenthal, R. and Hagins, W. A. (1977). Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker. Science, 195, 489–492.CrossRefPubMedGoogle Scholar
  84. Yasuda, T., Naito, Y., Tsumita, T. and Tadakuma, T. (1981). A simple method to measure anti-glycolipid antibody by using complement-mediated immune lysis of fluorescent dye trapped liposomes. J. Immunol. Meth., 44, 153–158.CrossRefGoogle Scholar
  85. Zumbuehl, O. and Weder, H. G. (1981). Liposomes of controllable size in the range of 40 to 180 nm by defined dialysis of lipid/detergent mixed micelles. Biochim. Biophys. Acta, 640, 252–262.CrossRefPubMedGoogle Scholar

Copyright information

© The Editor and Contributors 1989

Authors and Affiliations

  • Viola T. Kung
  • Eleanor Canova-Davis

There are no affiliations available

Personalised recommendations