The Area Postrema and Vomiting: How Important is Serotonin?

  • R. A. Leslie
  • D. J. M. Reynolds


In the last few years there has been a marked upsurge of interest in research regarding the neural mechanisms of control of nausea and vomiting, following the recent recognition (Miner and Sanger, 1986) that a poorly understood class of drugs has potent antiemetic properties for some forms of emesis. In particular, these drugs appear to be selective for emesis that is experienced by most cancer patients when they receive chemotherapy or radiotherapy for their condition. The drugs are ‘blockers’ of the ‘M’ type of serotonin (5-HT) receptor of Gaddum and Picarelli (1957), which is now classified as the 5-HT3 receptor (Bradley et al., 1986). Since the somewhat startling discovery that 5-HT3 receptor antagonists can be so potent and selective in this regard, a host of new drugs has been developed by several pharmaceutical companies to introduce even more potent and more selective drugs of this type.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlman, H. and Dahlstrom, A. (1982). Storage and release of 5-hydroxytryptamine in enterochromaffin cells of the small intestine. In 5-Hydroxytryptamine in Peripheral Reactions (ed. F. De Clerck and P. M. Vanhoutte). Raven Press, New York, pp. 1–21Google Scholar
  2. Allen, J. M., Fitzpatrick, M. L., Yeats, J. C, Darcy, K., Adrian, T. E. and Bloom, S. R. (1984). Effects of peptide YY and neuropeptide Y on gastric emptying in man. Digestion, 30, 255–262PubMedCrossRefGoogle Scholar
  3. Andrews, P. L. R. (1986). Vagal afferent innervation of the gastrointestinal tract. Prog. Brain Res., 67, 65–85PubMedCrossRefGoogle Scholar
  4. Andrews, P. L. R. and Davidson, H. I. M. (1990). A method for the induction of emesis in the conscious ferret by abdominal vagal stimulation. J. Physiol. (in press)Google Scholar
  5. Andrews, P. L. R. and Davis, C. J. (1990). The role of the gastrointestinal tract in nausea and vomiting. In Nausea and Vomiting (ed. R. K. Harding). CRC Press, ClevelandGoogle Scholar
  6. Andrews, P. L. R., Davis, C. J., Grahame-Smith, D. G. and Leslie, R. A. (1986). Increase in [3H]-2-deoxyglucose uptake in the ferret area postrema produced by apomorphine administration or electrical stimulation of the abdominal vagus. J. Physiol., 383, 187PGoogle Scholar
  7. Andrews, P. L. R. and Hawthorn, J. (1987). Evidence for an extra-abdominal site of action for the 5-HT3 receptor antagonist BRL 24924 in the inhibition of radiation-evoked emesis in the ferret. Neuropharmacology, 26, 1367–1370PubMedCrossRefGoogle Scholar
  8. Andrews, P. L. R., Rapeport, W. G. and Sanger, G. J. (1988). Neuropharmacology of emesis induced by anti-cancer therapy. Trends Pharm. Sci., 9, 334–341PubMedCrossRefGoogle Scholar
  9. Andrews, P. L. R. and Wood, K. L. (1988). Vagally mediated gastric motor and emetic reflexes evoked by stimulation of the antral mucosa in anaesthetized ferrets. J. Physiol., 395, 1–16PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barnes, J. H. (1984). The physiology and pharmacology of emesis. Molec. Aspects Med., 7, 397–508CrossRefGoogle Scholar
  11. Barnes, J. M., Barnes, N. M., Costall, B., Naylor, R. J. and Tyers, M. B. (1989). 5-HT3 receptors mediate inhibition of acetylcholine release in cortical tissue. Nature, 338, 762–763PubMedCrossRefGoogle Scholar
  12. Barnes, N. M., Costall, B. and Naylor, R. J. (1988a). [3H]Zacopride: ligand for the identification of 5-HT3 recognition sites. J. Pharm. Pharmcol., 40, 548–551CrossRefGoogle Scholar
  13. Barnes, N. M., Costall, B., Naylor, R. J. and Tattersall, F. D. (1988b). Reserpine, parachlorophenylalanine and fenfluramine antagonise cisplatin-induced emesis in the ferret. Neuropharmacology, 27, 783–790PubMedCrossRefGoogle Scholar
  14. Bermudez, J., Boyle, E. A., Miner, W. D. and Sanger, G. J. (1988). The anti-emetic and anti-nauseant potential of the 5-hydroxytryptamine3 receptor antagonist BRL 43694. Br. J. Cancer, 58, 644–650PubMedPubMedCentralCrossRefGoogle Scholar
  15. Blandina, P., Goldfarb, J. and Green, J. P. (1988). Activation of a 5-HT3 receptor releases dopamine from rat striatal slices. Eur. J. Pharmacol., 155, 349–350PubMedCrossRefGoogle Scholar
  16. Borison, H. L. (1957). Site of emetic action of X-irradiation in the cat. J. Comp. Neurol., 107, 439–453PubMedCrossRefGoogle Scholar
  17. Borison, H. L. (1974). Area postrema: chemoreceptive trigger zone for vomiting—is that all? Life Sci., 14, 1807–1817PubMedCrossRefGoogle Scholar
  18. Borison, H. L., Borison, R. and McCarthy, L. E. (1984). Role of the area postrema in vomiting and related functions. Fed. Proc., 43, 2955–2958PubMedGoogle Scholar
  19. Born, G. V. R. and Gillson, R. E. (1959). Studies on the uptake of 5-HT by blood platelets. J. Physiol., 146, 472–491PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bradley, P. B., Engel, G., Feniuk, W., Fozard, J. R., Humphrey, P. P. A., Middlemiss, D. N., Mylecharane, E. J., Richardson, B. P. and Saxena, P. R. (1986). Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology, 25, 563–576PubMedCrossRefGoogle Scholar
  21. Brizzee, K. R. and Mehler, W. R. (1986). The central nervous connections involved in the vomiting reflex. In Nausea and Vomiting: Mechanisms and Treatment (ed. C. J. Davis, G. V. Lake-Bakaar and D. G. Grahame-Smith). Springer-Verlag, Berlin, pp. 31–55CrossRefGoogle Scholar
  22. Caccia, S., Conti, I., Vigano, G. and Garattini, S. (1986). l-(2-Pyrimidinyl)-piperazine as active metabolite of buspirone in man and rat. Pharmacology, 33, 46–51PubMedCrossRefGoogle Scholar
  23. Carpenter, D. O. (1988). Central nervous system mechanisms in deglutition and emesis. In Handbook of Physiology, Vol. IV: Motility and Circulation (ed. J. W. Wood). American Physiological Society, BethesdaGoogle Scholar
  24. Carpenter, D. O., Briggs, D. B., Knox, A. P. and Strominger, N. (1986). Radiation-induced emesis in the dog: effects of lesions and drugs. Radiat. Res., 108, 307–316PubMedCrossRefGoogle Scholar
  25. Carpenter, D. O., Briggs, D. B., Knox, A. P. and Strominger, N. (1988). Excitation of area postrema neurons by transmitters, peptides and cyclic nucleotides. J. Neurophysiol., 59, 358–369PubMedGoogle Scholar
  26. Carpenter, D. O., Briggs, D. B. and Strominger, N. (1983). Responses of neurons of canine area postrema to neurotransmitters and peptides. Cell. Molec. Neurol., 3, 113–126CrossRefGoogle Scholar
  27. Clarke, D. E., Craig, D. A. and Fozard, J. R. (1989). The 5-HT4 receptor: naughty, but nice. Trends Pharmacol. Sci., 10, 385–386PubMedCrossRefGoogle Scholar
  28. Clarke, G. D. and Davison, J. S. (1978). Mucosal receptors in the gastric antrum and small intestine of the rat with afferent fibres in the cervical vagus. J. Physiol., 284, 55–67PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dahlstrom, A. and Fuxe, K. (1964). Evidence for the existence of monoamine-containing neurons in the central nervous system. Acta Physiol. Scand., 62, Suppl. 232, 1–55Google Scholar
  30. Davis, C. J. (1989). Neuropharmacological Investigations into the Mechanisms of Emesis Caused by Cytotoxic Drugs and Radiation. D. Phil. Thesis, University of OxfordGoogle Scholar
  31. Davis, C. J., Harding, R. K., Leslie, R. A. and Andrews, P. L. R. (1986). The organisation of vomiting as a protective reflex. In Nausea and Vomiting: Mechanisms and Treatment (ed. C. J. Davis, G. V. Lake-Bakaar and D. G. Grahame-Smith). Springer-Verlag, Berlin, pp. 65–75CrossRefGoogle Scholar
  32. Diz, D. I., Barnes, D. L. and Ferrario, C. M. (1986). Contribution of the vagus nerve to angiotensin II binding sites in the canine medulla. Brain Res. Bull., 17, 497–505PubMedCrossRefGoogle Scholar
  33. Dumuis, A., Bouhelal, R., Sebben, M. and Bockaert, J. (1988). A 5-HT receptor in the central nervous system, positively coupled with adenylate cyclase, is antagonized by ICS 205 930. Eur. J. Pharmacol, 146, 187–188PubMedCrossRefGoogle Scholar
  34. Dumuis, A., Sebben, M. and Bockaert, J. (1989). The gastrointestinal prokinetic benzamide derivatives are agonists at the non-classical 5-HT receptor (5-HT4) positively coupled to adenylate cyclase in neurons. Naunyn-Schmiedebergs Arch. Pathol. Exp. Pharmakol., 340, 403–410CrossRefGoogle Scholar
  35. Edwards, G. L. and Ritter, R. C. (1981). Ablation of the area postrema causes exaggerated consumption of preferred foods in the rat. Brain Res., 216, 265–276PubMedCrossRefGoogle Scholar
  36. Erpsamer, V. (1954). Pharmacology of indole alkylamines. Pharmacol. Rev., 6, 425–487Google Scholar
  37. Florczyk, A. P., Schurig, J. E. and Bradner, W. T. (1982). Cisplatin-induced emesis in the ferret: a new animal model. Cancer Treat. Rep., 66, 187–189PubMedGoogle Scholar
  38. Fuxe, K. and Owman, C. (1965). Cellular localization of monoamines in the area postrema of certain mammals. J. Comp. Neurol., 125, 337–354PubMedCrossRefGoogle Scholar
  39. Gaddum, J. H. and Picarelli, Z. P. (1957). Two kinds of tryptamine receptor. Br. J. Pharmacol., 12, 323–328Google Scholar
  40. Gaudin-Chazal, G., Seyfritz, N., Araneda, S., Vigier, D. and Puizillout, J. J. (1982). Selective retrograde transport of [3H]serotonin in vagal afférents. Brain Res. Bull., 8, 503–509PubMedCrossRefGoogle Scholar
  41. Gerstner, H. B. (1960). Reaction to short term radiation in man. Ann. Rev. Med., 11, 389–402CrossRefGoogle Scholar
  42. Grahame-Smith, D. G. (1972). The Carcinoid Syndrome. Heinemann, LondonGoogle Scholar
  43. Grahame-Smith, D. G. (1986). The multiple causes of vomiting: is there a common mechanism? In Nausea and Vomiting: Mechanisms and Treatment (ed. C. J. Davis, G. V. Lake-Bakaar and D. G. Grahame-Smith). Springer-Verlag, Berlin, pp. 1–8CrossRefGoogle Scholar
  44. Gunning, S. J., Hagan, R. M. and Tyers, M. B. (1987). Cisplatin induces biochemical and histological changes in the small intestine of the ferret. Br. J. Pharmacol., 90, 135PGoogle Scholar
  45. Gwyn, D. G. and Leslie, R. A. (1979). Retrograde degeneration studies on the afferents of the vagus nerve to the area subpostrema of the cat. Brain Res., 161, 335–341PubMedCrossRefGoogle Scholar
  46. Gwyn, D. G., Leslie, R. A. and Hopkins, D. A. (1979). Gastric afférents in the nucleus of the solitary tract in the cat. Neurosci. Lett., 14, 13–17PubMedCrossRefGoogle Scholar
  47. Harding, R. K., McDonald, T. J., Hugenholtz, H., Kucharczyk, J. and Leach, K. E. (1985). PYY: a relevant emetic peptide? Gastroenterology, 88, 1413Google Scholar
  48. Harris, A. L. and Cantwell, B. M. J. (1986). Mechanisms and treatment of cytotoxic-induced nausea and vomiting. In Nausea and Vomiting: Mechanisms and Treatment (ed. C. J. Davis, G. V. Lake-Bakaar and D. G. Grahame-Smith). Springer-Verlag, Berlin, pp. 78–93CrossRefGoogle Scholar
  49. Hatcher, R. A. (1924). The mechanisms of vomiting. Physiol. Rev., 4, 479–504Google Scholar
  50. Hawthorn, J., Ostler, K. J. and Andrews, P. L. R. (1988). The role of the abdominal visceral innervation and 5-hydroxytryptamine M-receptors in vomiting induced by the cytotoxic drugs cyclophosphamide and cisplatin in the ferret. J. Exp. Physiol., 73, 7–21CrossRefGoogle Scholar
  51. Higgins, G. A., Kilpatrick, G. J., Bunce, K. T., Jones, B. J. and Tyers, M. B. (1989). 5-HT3 receptor antagonists injected into the area postrema inhibit cisplatin-induced emesis in the ferret. Br. J. Pharmacol., 97, 247–255PubMedPubMedCentralCrossRefGoogle Scholar
  52. Howe, P. R. C., Moon, E. and Dampney, R. A. L. (1983). Distribution of serotonin nerve cells in the rabbit brainstem. Neurosci. Lett., 38, 125–130PubMedCrossRefGoogle Scholar
  53. Ireland, S. J. and Tyers, M. B. (1987). Pharmacological characterization of 5-hydroxytryptamine-induced depolarization of the rat isolated vagus nerve. Br. J. Pharmacol., 90, 229–238PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kalia, M. and Mesulam, M.-M. (1979). Brain stem projections of sensory and motor components of the vagus complex in the cat. II. Laryngeal, tracheo-bronchial, pulmonary, cardiac and gastrointestinal branches. J. Comp. Neurol., 193, 467–508CrossRefGoogle Scholar
  55. Kilpatrick, G. J., Jones, B. J. and Tyers, M. B. (1987). Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature, 330, 746–748PubMedCrossRefGoogle Scholar
  56. Kilpatrick, G. J., Jones, B. J. and Tyers, M. B. (1988). The distribution of specific binding of the 5-HT3 receptor ligand [3H]GR65630 in rat brain using quantitative autoradiography. Neurosci. Lett., 94, 156–160PubMedCrossRefGoogle Scholar
  57. Ladenheim, E. E., Speth, R. C. and Ritter, R. C. (1988). Reduction of CCK-8 binding in the nucleus of the solitary tract in unilaterally nodosectomized rats. Brain Res., 474, 125–129PubMedCrossRefGoogle Scholar
  58. Leibundgut, U. and Lancranjan, I. (1987). First results with ICS 205-930 (5-HT3 receptor antagonist) in prevention of chemotherapy-induced emesis. Lancet, 1, 1198PubMedCrossRefGoogle Scholar
  59. Leslie, R. A. (1985). Neuroactive substances in the dorsal vagal complex of the medulla oblongata: nucleus tractus solitarius, area postrema and dorsal motor nucleus of the vagus. Neurochem. Int., 7, 191–121PubMedCrossRefGoogle Scholar
  60. Leslie, R. A. (1986). Comparative aspects of the area postrema: fine structural considerations help to determine its function. Cell. Molec. Neurobiol., 6, 95–120PubMedCrossRefGoogle Scholar
  61. Leslie R. A. and Gwyn, D. G. (1984). Neuronal connections of the area postrema. Fed. Proc., 43, 2941–2943PubMedGoogle Scholar
  62. Leslie R. A., Gwyn, D. G. and Hopkins, D. A. (1982). The central distribution of the cervical vagus nerve and gastric afferent and efferent projections in the rat. Brain Res. Bull., 8, 37–43PubMedCrossRefGoogle Scholar
  63. Leslie, R. A., Gwyn, D. G. and Morrison, C. M. (1978). The fine structure of the ventricular surface of the area postrema of the cat, with particular reference to supraependymal structures. Am. J. Anat., 153, 273–290PubMedCrossRefGoogle Scholar
  64. Leslie, R. A., MacDonald, T. J. and Robertson, H. A. (1988). Autoradiographic localization of Peptide YY and Neuropeptide Y binding sites in the medulla oblongata. Peptides, 9, 1071–1076PubMedCrossRefGoogle Scholar
  65. Leslie, R. A., Murphy, K. M. and Robertson, H. A. (1989a). Nodose ganglionectomy selectively reduces muscarinic cholinergic and delta opioid binding sites in the dorsal vagal complex of the cat. Neuroscience, 32, 481–492PubMedCrossRefGoogle Scholar
  66. Leslie, R. A. and Osborne, N. N. (1984). Amines and other transmitter-like compounds in the bovine area postrema. Brain Res. Bull., 13, 357–362PubMedCrossRefGoogle Scholar
  67. Leslie, R. A., Reynolds, D. J. M., Andrews, P. L. R., Grahame-Smith, D. G., Davis, C. J. and Harvey, J. M. (1990). Evidence for presynaptic 5-HT3 recognition sites on vagal afferent terminals in the brainstem of the ferret. Neuroscience (in press)Google Scholar
  68. Leslie, R. A., Reynolds, D. J. M., Grasby, P. M. and Grahame-Smith, D. G. (1989b). Autoradiographic localisation of the 5-HT3 antagonist [3H]BRL 43694 in the dorsal vagal complex of the ferret. Proc. Soc. NeuroscL., 15, 586Google Scholar
  69. Lindstrom, P. A. and Brizzee, K. R. (1962). Relief of intractable vomiting from surgical lesions in the area postrema. J. Neurosurg., 19, 228–236PubMedCrossRefGoogle Scholar
  70. Lucot, J. B. (1989a). RU 24969-induced emesis in the cat: serotonin-1D sites implicated. Proc. Soc. Neurosci., 15, 220Google Scholar
  71. Lucot, J. B. (1989b). Blockade of 5-hydroxytryptamine3 receptors prevents cisplatin-induced but not motion-or xylazine-induced emesis in the cat. Pharmacol. Biochem. Behav., 32, 207–210PubMedCrossRefGoogle Scholar
  72. Lucot, J. B. and Crampton, G. H. (1987). Buspirone blocks cisplatin-induced emesis in cats. J. Clin. Pharmacol, 27, 817–818PubMedCrossRefGoogle Scholar
  73. Lundberg, J. M., Tatemoto, K., Terenius, L., Hellstrom, P. M., Mutt, V., Hokfelt, T. and Hamberger, B. (1982). Localisation of peptide YY (PYY) in gastrointestinal endocrine cells and effects on intestinal blood flow and motility. Proc. Natl Acad. Sci. USA, 79, 4471–4475PubMedPubMedCentralCrossRefGoogle Scholar
  74. McCarthy, L. E. and Borison, H. L. (1984). Cisplatin-induced vomiting eliminated by ablation of the area postrema in cats. Cancer Treat. Rep., 68, 401–404PubMedGoogle Scholar
  75. McMillen, B. A. and Mattiace, L. A. (1983). Comparative neuropharmacology of buspirone and MJ-13805, a potential anti-anxiety drug. J. Neural. Trans., 57, 255–265CrossRefGoogle Scholar
  76. Matsuoka, O., Tsuchiya, T. and Furukawa, Y. (1962). The effect of X-irradiation on 5-hydroxytryptamine (serotonin) contents in the small intestines of experimental animals. J. Radial. Res., 3, 104–108CrossRefGoogle Scholar
  77. Mei, N. (1985). Intestinal chemosensitivity. Physiol. Rev., 65, 211–237PubMedGoogle Scholar
  78. Miller, A. D. and Wilson, V. J. (1983). ‘Vomiting center’ reanalyzed: an electrical stimulation study. Brain Res., 270, 154–158PubMedCrossRefGoogle Scholar
  79. Miner, W. D. and Sanger, G. J. (1986). Inhibition of cisplatin-induced vomiting by selective 5-hydroxytryptamine M receptor antagonism. Br. J. Pharmacol., 88, 497–499PubMedPubMedCentralCrossRefGoogle Scholar
  80. Miner, W. D., Sanger, G. J. and Turner, D. H. (1987). Evidence that 5-hydroxytryptamine3 receptors mediate cytotoxic drug and radiation-evoked emesis. Br. J. Cancer, 56, 159–162PubMedPubMedCentralCrossRefGoogle Scholar
  81. Nelson, D. R. and Thomas, D. R. (1989). [3H]-BRL 43694 (Granisetron), a specific ligand for 5-HT3 binding sites in rat brain cortical membranes. Biochem. Pharmacol., 38, 1693–1695PubMedCrossRefGoogle Scholar
  82. Newson, B., Ahlman, H., Dahlstrom, A. and Nyhus, L. M. (1982). Ultrastructural observations in the rat ileal mucosa of possible epithelial ‘taste cells’ and submucosal sensory neurons. Acta Physiol. Scand., 114, 161–164PubMedCrossRefGoogle Scholar
  83. Newton, B. W., Maley, B. and Traurig, H. (1985). The distribution of substance P, enkephalin, and serotinin immunoreactivities in the area postrema of the rat and cat. J. Comp. Neurol., 234, 87–104PubMedCrossRefGoogle Scholar
  84. Palkovits, M. (1985). Distribution of neuroactive substances in the dorsal vagal complex of the medulla oblongata. Neurochem. Int., 7, 213–219PubMedCrossRefGoogle Scholar
  85. Pazos, A., Probst, A. and Palacios, J. M. (1987a). Serotonin receptors in the human brain. III. Autoradiographic mapping of serotonin-1 receptors. Neuroscience, 21, 97–122PubMedCrossRefGoogle Scholar
  86. Pazos, A., Probst, A. and Palacios, J. M. (1987b). Serotonin receptors in the human brain. IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience, 21, 123–139PubMedCrossRefGoogle Scholar
  87. Peroutka, S. J. and Hamik, A. (1988). [3H]quipazine labels 5-HT3 recognition sites in rat cortical membranes. Eur. J. Pharmacol., 148, 297–299PubMedCrossRefGoogle Scholar
  88. Pratt, G. D. and Bowery, N. G. (1989). The 5-HT3 receptor ligand [3H]-BRL 43694 binds to presynaptic sites in the nucleus tractus solitarius of the rat. Neuropharmacology, 28, 1367–1376PubMedCrossRefGoogle Scholar
  89. Pratt, G. D., Bowery, N. G., Kilpatrick, G. J., Leslie, R. A., Barnes, N. M., Naylor, R. J., Jones, B. J., Nelson, D. R., Palacios, J. M., Slater, P. and Reynolds, D. J. M. (1990). Consensus meeting agrees distribution of 5-HT3 receptors in mammalian hindbrain. Trends Pharm. Sci., 11, 135–137PubMedCrossRefGoogle Scholar
  90. Reynolds, D. J. M., Andrews, P. L. R., Leslie, R. A., Harvey, J. M., Grasby, P. M. and Grahame-Smith, D. G. (1989b). Bilateral abdominal vagotomy abolishes binding of [3H]BRL 43694 in ferret dorsovagal complex. Br. J. Pharmacol., 98, 692PGoogle Scholar
  91. Reynolds, D. J. M., Leslie, R. A., Grahame-Smith, D. G. and Harvey, J. M. (1989a). Localization of 5-HT3 receptor binding sites in human dorsal vagal complex. Eur. J. Pharmacol., 174, 127–130PubMedCrossRefGoogle Scholar
  92. Reynolds, D. J. M., Leslie, R. A., Grahame-Smith, D. G. and Harvey, J. M. (1990). Autoradiographic localization of 5-HT3 receptor ligand binding in the cat brainstem. Neurochem. Int.., in pressGoogle Scholar
  93. Richardson, B. P. and Buchheit, K. H. (1988). The pharmacology, distribution and function of 5-HT3 receptors. In Neuronal Serotonin (ed. N. N. Osborne and M. Hamon). Wiley, Chichester, pp. 465–506Google Scholar
  94. Richardson, B. P. and Engel, G. (1986). The pharmacology and function of 5-HT3 receptors. Trends Neurosci., 9, 424–428CrossRefGoogle Scholar
  95. Richardson, B. P., Engel, G., Donatsch, P. and Stadler, P. A. (1985). Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. Nature, 316, 126–131PubMedCrossRefGoogle Scholar
  96. Robertson, H. A. and Dragunow, M. (1990). From synapse to genome: the role of immediateearly genes in permanent alterations in the central nervous system. In Current Aspects of the Neurosciences, Vol. 2 (ed. N. N. Osborne). Macmillan Press, London, pp. 143–157Google Scholar
  97. Round, A. and Wallis, D. I. (1987). Further studies on the blockade of 5-HT depolarizations of rabbit vagal afferent and sympathetic ganglion cells by MDL 72222 and other antagonists. Neuropharmacology, 26, 39–48PubMedCrossRefGoogle Scholar
  98. Sanger, G. J. and King, F. D. (1988). From metoclopramide to selective gut motility stimulants and 5-HT3 receptor antagonists. Drug Des. Deliv., 3, 273–295PubMedGoogle Scholar
  99. Sharp, T., Bramwell, S. R. and Grahame-Smith, D. G. (1989). 5-HT1 agonists reduce 5-hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis. Br. J. Pharmacol., 96, 283–290PubMedPubMedCentralCrossRefGoogle Scholar
  100. Shirakawa, J., Takeda, K., Taniyama, K. and Tanaka, C. (1989). Dual effects of 5-hydroxytryptamine on the release of gamma-aminobutyric acid from myenteric neurones of the guinea-pig ileum. Br. J. Pharmacol., 98, 339–341PubMedPubMedCentralCrossRefGoogle Scholar
  101. Smith, W. L., Callaham, E. M. and Alphin, R. S. (1988). The emetic activity of centrally administered cisplatin in cats and its antagonism by zacopride. J. Pharm. Pharmacol., 40, 142–143PubMedCrossRefGoogle Scholar
  102. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlack, C. S., Pettigrew, K. D., Sakurada, O. and Shinohara, M. (1977). The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem., 28, 897–916PubMedCrossRefGoogle Scholar
  103. Talley, N. J., Phillips, S. F., Haddad, A., Miller, L. J., Twomey, C., Zinsmeister, A. R. and Ciociola, A. (1989). Effect of selective 5-HT3 antagonists (GR 38032F) on small intestinal transit and release of gastrointestinal peptides. Dig. Dis. Sci., 34, 1511–1515PubMedCrossRefGoogle Scholar
  104. Treisman, M. (1977). Motion sickness: an evolutionary hypothesis. Science, N.Y., 197, 493–495CrossRefGoogle Scholar
  105. Verbeuren, T. J. (1989). Synthesis, storage, release and metabolism, of 5-hydroxytryptamine in peripheral tissues. In The Peripheral Actions of 5-Hydroxytryptamine (ed. J. R. Fozard). Oxford University Press, Oxford, pp. 1–25Google Scholar
  106. Waeber, C., Dixon, K., Hoyer, D. and Palacios, J. M. (1988). Localization by autoradiography of neuronal 5-HT3 receptors in the mouse CNS. Eur. J. Pharmacol., 151, 351–352PubMedCrossRefGoogle Scholar
  107. Waeber, C., Hoyer, D. and Palacios, J. M. (1989). 5-Hydroxytryptamine3 receptors in the human brain: autoradiographic visualization using [3H]ICS205 930. Neuroscience, 31, 393–400PubMedCrossRefGoogle Scholar
  108. Wang, S. C. and Borison, H. L. (1952). A new concept of organization of the central emetic mechanism: recent studies on the sites of action of apomorphine, copper sulphate and cardiac glycosides. Gastroenterology, 22, 1–12PubMedGoogle Scholar
  109. Wang, S. C, Renzi, A. A. and Chinn, H. I. (1958). Mechanism of emesis following X-irradiation. Am. J. Physiol, 193, 335–359PubMedGoogle Scholar
  110. Watling, K. T., Aspley, S., Swain, C. J. and Saunders, J. (1988). [3H]quaternised ICS 205-930 labels 5-HT3 receptor binding sites in rat brain. Eur. J. Pharmacol., 149, 397–398PubMedCrossRefGoogle Scholar
  111. Young, R. W. (1986). Mechanisms and treatment of radiation-induced nausea and vomiting. In Nausea and Vomiting: Mechanisms and Treatment (ed. C. J. Davis, G. V. Lake-Bakaar and D. G. Grahame-Smith). Springer-Verlag, Berlin, pp. 94–109CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1991

Authors and Affiliations

  • R. A. Leslie
    • 1
  • D. J. M. Reynolds
    • 2
  1. 1.Oxford UniversityUK
  2. 2.MRC Unit and University Department of Clinical PharmacologyRadcliffe InfirmaryOxfordUK

Personalised recommendations