Advertisement

Excitatory Amino Acid Receptors and Phosphoinositide Breakdown: Facts and Perspectives

  • Max Récasens
  • Ebrahim Mayat
  • Janique Guiramand
Chapter

Abstract

Although phosphoinositides were isolated from brain membranes by Folch in 1949, stimulated phosphoinositide metabolism by neuroactive substances was discovered in 1953 by Hokin and Hokin, who showed that the incorporation of 32P into phospholipids of the pancreas was augmented by acetylcholine. In 1961, Dittmer and Dawson (Dawson and Dittmer, 1961; Dittmer and Dawson, 1961) identified these polyphosphoinositides as phosphatidylinositol-4-phosphate (PIP) and phosphatidylinositol-4,5-bisphosphate (PIP2). However, the notion that phosphoinositide metabolism is associated with receptor function was only proposed in 1969 by Durell and co-workers, while a few years later (1975) Michell assumed a close relation between phosphoinositide metabolism and intracellular calcium. Finally, the missing link (inositol trisphosphate) between membrane receptor-coupled phosphoinositide metabolism and the changes in intracellular calcium originating from internal stores was discovered by Berridge and Irvine in 1984.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, T., Kawai, N. and Miwa, A. (1983). Effects of a spider toxin on the glutaminergic synapse of lobster muscle. J. Physiol., 339, 243–252PubMedPubMedCentralCrossRefGoogle Scholar
  2. Akiyama, K., Yamada, N. and Sato, M. (1987). Increase in ibotenate-stimulated phosphatidylinositol hydrolysis in slices of the amygdala/pyriform cortex and hippocampus of rat by amygdala kindling. Exp. Neurol., 98, 499–508PubMedCrossRefGoogle Scholar
  3. Akiyama, K., Yamada, N. and Otsuki, S. (1989). Lasting increase in excitatory amino acid receptor-mediated polyphosphoinositide hydrolysis in the amygdala/pyriform cortex of amygdala-kindled rats. Brain Res., 485, 95–101PubMedCrossRefGoogle Scholar
  4. Ambrosini, A. and Meldolesi, J. (1989). Muscarinic and quisqualate receptor-induced phosphoinositide hydrolysis in primary cultures of striatal and hippocampal neurons. Evidence for differential mechanisms of activation. J. Neurochem., 53, 825–833PubMedCrossRefGoogle Scholar
  5. Aramaki, Y., Yasuhara, T., Higashijima, T., Yoshioka, M., Miwa, A., Kawai, N. and Nakajima, T. (1986). Chemical characterization of spider toxin, JSTX and NSTX. Proc. Jap. Acad. Sci., 62, 359–362CrossRefGoogle Scholar
  6. Aram, J. A. and Lodge, D. (1987). NMA receptors and different types of epileptiform activity in rat cortical slices. J. Physiol. (Lond.), 382, 89PCrossRefGoogle Scholar
  7. Arkin, M. S. and Miller, R. F. (1987). Subtle actions of 2-amino-4-phosphonobutyrate (APB) on the OFF pathway in the mudpuppy retina. Brain Res., 426, 142–148PubMedCrossRefGoogle Scholar
  8. Ascher, P. (1988). Divalent cations and the NMDA channel. Biomed. Res., 9, Suppl. 2, 31–37Google Scholar
  9. Ascher, P. and Nowak, L. (1986). Calcium permeability of the channels activated by N-methyl-D-aspartate (NMDA) in mouse central neurones. J. Physiol. (Lond.), 377, 43PGoogle Scholar
  10. Ascher, P. and Nowak, L. (1988a). The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurones in culture. J. Physiol. (Lond.), 399, 247–266PubMedCentralCrossRefGoogle Scholar
  11. Ascher, P. and Nowak, L. (1988b). Quisqualate-and kainate-activated channels in mouse central neurones in culture. J. Physiol. (Lond.), 399, 227–245CrossRefGoogle Scholar
  12. Ascher, P., Bregestovski, P. and Nowak, L. (1988). N-Methyl-D-aspartate-activated ion channels of mouse central neurones in magnesium-free solutions. J. Physiol. (Lond.), 399, 207–226CrossRefGoogle Scholar
  13. Baba, A., Lee, E., Tatsuno, T. and Iwata, H. (1982). Cysteine sulfinic acid in the central nervous system: Antagonistic effect of taurine on cysteine sulfinic acid-stimulated formation of cyclic AMP in guinea pig hippocampal slices. J. Neurochem., 38, 1280–1285PubMedCrossRefGoogle Scholar
  14. Baird, J. G. and Nahorski, S. R. (1986). Potassium depolarization markedly changes muscarinic receptor stimulated inositol tetrakisphosphate accumulation in rat cerebral cortical slices Biochem. Biophys. Res. Commun., 141, 1130–1137PubMedCrossRefGoogle Scholar
  15. Balcar, V. J., Borg, J. and Mandel, P. (1977). High affinity uptake of L-glutamate and L-aspartate by glial cells. J. Neurochem., 28, 87–93PubMedCrossRefGoogle Scholar
  16. Balazs, R., Hack, N. and Jorgensen, O. S. (1988a). Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating cerebellar granule cells. Neurosci. Lett., 87, 80–86PubMedCrossRefGoogle Scholar
  17. Balazs, R., Hack, N., Jorgensen, O. S. and Cotman, C. W. (1989). N-Methyl-D-aspartate promotes the survival of cerebellar granule cells: pharmacological characterization. Neurosci. Lett., 101, 241–246PubMedCrossRefGoogle Scholar
  18. Balazs, R., Jorgensen, O. S. and Hack, N. (1988b). N-Methyl-D-aspartate promotes the survival of cerebellar granule cells in culture. Neuroscience, 27, 437–451PubMedCrossRefGoogle Scholar
  19. Barcenas-Ruiz, L., Beuckelmann, D. J. and Wier, W. G. (1987). Sodium-calcium exchange in heart: Membrane currents and changes in [Ca2+]i.Science, N. Y., 238, 1720–1722CrossRefGoogle Scholar
  20. Baudry, M., Evans, J. and Lynch, G. (1986). Excitatory amino acids inhibit stimulation of phosphatidylinositol metabolism by aminergic agonists in hippocampus. Nature, 319, 329–331PubMedCrossRefGoogle Scholar
  21. Baudry, M., Kramer, K., Fagni, L., Récasens, M. and Lynch, G. (1983). Classification and properties of acidic amino acid receptors in hippocampus. II. Biochemical studies using a sodium efflux assay. Mol. Pharmacol., 24, 222–228PubMedGoogle Scholar
  22. Beal, M. F., Kowall, N. W., Ellison, D. W., Mazurek, M. F., Swartz, K. J. and Martin, J. B. (1986). Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature, 321, 168–171PubMedCrossRefGoogle Scholar
  23. Bennett, C. F. and Crooke, S. T. (1987). Purification and characterization of a phosphoinositide-specific phospholipase C from guinea pig uterus. J. Biol. Chem., 262, 13789–13797PubMedGoogle Scholar
  24. Berridge, M. J. (1984). Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J., 220, 345–360PubMedPubMedCentralCrossRefGoogle Scholar
  25. Berridge, M. J. (1987). Inositol trisphosphate and diacylglycerol: two interacting second messengers. Ann. Rev. Biochem., 56, 159–193PubMedCrossRefGoogle Scholar
  26. Berridge, M. J. and Irvine, R. F. (1984). Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature, 312, 315–321PubMedCrossRefGoogle Scholar
  27. Berridge, M. J. and Irvine, R. F. (1989). Inositol phosphates and cell signalling. Nature, 341, 197–205PubMedCrossRefGoogle Scholar
  28. Bliss, T. V. P. and Lomo, T. (1973). Long lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.), 232, 331–356CrossRefGoogle Scholar
  29. Bliss, T. V. P., Douglas, R. M., Errington, M. L. and Lynch, M. A. (1986). Correlation between long-term potentiation and release of endogenous amino acids from dentate gyrus of anaesthetized rats. J. Physiol. (Lond.), 377, 391–408CrossRefGoogle Scholar
  30. Borst, J. G. G., Melchers, B. P. C. and Lopes da Suva, F. H. (1989). Effect of different concentrations of phorbol ester on tetanus-induced long-term potentiation in the rat hippocampus. Neurosci. Res. Commun., 4, 11–16Google Scholar
  31. Bowers, C. W. A. (1985). A cadmium-sensitive, tetrodotoxin-resistant sodium channel in bullfrog autonomic axons. Brain Res., 340, 143–147PubMedCrossRefGoogle Scholar
  32. Brass, L. F., Woolkalis, M. J. and Manning, D. R. (1988). Interactions in platelets betwen G proteins and the agonists that stimulate phospholipase C and inhibit adenylyl cyclase. J. Biol. Chem., 263, 5348–5355PubMedGoogle Scholar
  33. Brose, N., Halpain, S., Suchanek, C. and Jahn, R. (1989). Characterization and partial purification of a chloride-and calcium-dependent glutamate-binding protein from rat brain. J. Biol. Chem., 264, 9619–9625PubMedGoogle Scholar
  34. Butcher, S. P., Lazarewicz, J. W. and Hamberger, A. (1987). In vivo microdialysis studies on the effects of decortication and excitotoxic lesions on kainic acid-induced calcium fluxes, and endogenous amino acid release, in the rat striatum. J. Neurochem., 49, 1355–1360PubMedCrossRefGoogle Scholar
  35. Campochiaro, P., Ferkany, J. W. and Coyle, J. T. (1985). Excitatory amino acid analogs evoke release of endogenous amino acids and acetylcholine from chick retina in vitro. Vision Res., 25, 1375–1386PubMedCrossRefGoogle Scholar
  36. Canonico, P. L., Favit, A., Catania, M. V. and Nicoletti, F. (1988). Phorbol esters attenuate glutamate-stimulated inositol phospholipid hydrolysis in neuronal cultures. J. Neurochem., 51, 1049–1053PubMedCrossRefGoogle Scholar
  37. Carter, C., Rivy, J.-P. and Scatton, B. (1989). Ifenprodil and SL 82.0715 are antagonists at the polyamine site of the N-methyl-D-aspartate (NMDA) receptor. Eur. J. Pharmacol., 164, 611–612PubMedCrossRefGoogle Scholar
  38. Cha, J.-H. J., Greenamyre, T., Nielsen, E. O., Penney, J. B. and Young, A. B. (1988). Properties of quisqualate-sensitive L-[3H]glutamate binding sites in rat brain as determined by quantitative autoradiography. J. Neurochem., 51, 469–478PubMedCrossRefGoogle Scholar
  39. Chauhan, A., Chauhan, V. P. S., Deshmukh, D. S. and Brockerhoff, H. (1989). Phosphatidylinositol 4,5-bisphosphate competitively inhibits phorbol ester binding to protein kinase C. Biochemistry, 28, 4952–4956PubMedCrossRefGoogle Scholar
  40. Chen, C.-K., Silverstein, F. S., Fisher, S. K., Statman, D. and Johnston, M. V. (1988). Perinatal hypoxic-ischemic brain injury enhances quisqualic acid-stimulated phosphoinositide turnover. J. Neurochem., 51, 353–359PubMedCrossRefGoogle Scholar
  41. Cheramy, A., Romo, R., Godeheu, G., Baruch, P. and Glowinski, J. (1986). In vivo presynaptic control of dopamine release in the cat caudate nucleus. II. Facilitatory or inhibitory influence of L-glutamate. Neuroscience, 19, 1081–1090PubMedCrossRefGoogle Scholar
  42. Choi, D. W. (1987). Ionic dependence of glutamate neurotoxicity. J. Neuroscience, 7, 369–379PubMedGoogle Scholar
  43. Chuang, D.-M. (1989). Neurotransmitter receptors and phosphoinositide turnover. Ann. Rev. Pharmacol. Toxicol., 29, 71–110CrossRefGoogle Scholar
  44. Clow, D. W. and Jhamandas, K. (1988). Characterization of L-glutamate action on the release of endogenous dopamine from the rat caudate putamen. J. Pharmacol. Exp. Ther., 248, 722–728Google Scholar
  45. Cole, A. J., Saffen, D. W., Baraban, J. M. and Worley, P. F. (1989). Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature, 340, 474–476PubMedCrossRefGoogle Scholar
  46. Collingridge, G. L., Kehl, S. J. and McLennan (1983). Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. (Lond.), 334, 33–46CrossRefGoogle Scholar
  47. Court, J. A., Fowler, C. J., Candy, J. M., Hoban, P. R. and Smith, C. J. (1986). Raising the ambient potassium ion concentration enhances carbachol stimulated phosphoinositide hydrolysis in rat brain hippocampal and cerebral cortical miniprisms. Naunyn-Schmiedebergs Arch. Pathol. Exp. Pharmacol., 334, 10–16CrossRefGoogle Scholar
  48. Croucher, M. J., Bradford, H. F., Sunter, D. C. and Watkins, J. C. (1988). Inhibition of the development of electrical kindling of the prepyriform cortex by daily focal injections of excitatory amino acid antagonists. Eur. J. Pharmacol., 152, 29–38PubMedCrossRefGoogle Scholar
  49. Daschmann, B., Allgaier, C., Nakov, R. and Hertting, G. (1988). Staurosporine counteracts the phorbol ester-induced enhancement of neurotransmitter release in hippocampus. Arch. Int. Pharmacodyn. Ther., 296, 232–245PubMedGoogle Scholar
  50. Davies, S. N., Lester, R. A. J., Reyman, K. G. and Collingridge, G. L. (1989). Temporally distinct pre-and post-synaptic mechanisms maintain long-term potentiation. Nature, 338, 500–503PubMedCrossRefGoogle Scholar
  51. Dawson, R. M. C. and Dittmer, J. C. (1961). Evidence for the structure of brain triphosphoinositide from hydrolytic degradation studies. Biochem. J., 81, 540–545PubMedPubMedCentralCrossRefGoogle Scholar
  52. Dittmer, J. C. and Dawson, R. M. C. (1961). The isolation of a new lipid, triphosphoinositide and monophosphoinositide from ox brain. Biochem. J., 81, 535–540PubMedPubMedCentralCrossRefGoogle Scholar
  53. Do, K. Q., Mattenberger, M., Streit, P. and Cuenod, M. (1986). In vitro release of endogenous excitatory sulfur-containing amino acids from various rat brain regions. J. Neurochem., 46, 779–786PubMedCrossRefGoogle Scholar
  54. Doble, A. and Perrier, M. L. (1989). Pharmacology of excitatory amino acid receptors coupled to inositol phosphate metabolism in neonatal rat striatum. Neurochem. Int., 15, 1–8PubMedCrossRefGoogle Scholar
  55. Drejer, J. and Honoré, T. (1988). New quinoxalinediones show potent antagonism of quisqualate responses in cultured mouse cortical neurons. Neurosci. Lett., 87, 104–108PubMedCrossRefGoogle Scholar
  56. Drejer, J., Honoré, T. and Schousboe, A. (1987). Excitatory amino acid-induced release of 3H-GABA from cultured mouse cerebral cortex interneurons. J. Neurosci., 7, 2910–2916PubMedGoogle Scholar
  57. Drejer, J., Sheardown, M., Nielsen, E. and Honoré, T. (1989). Glycine reverses the effect of HA-966 on NMDA responses in cultured rat cortical neurons and in chick retina. Neurosci. Lett., 98, 333–338PubMedCrossRefGoogle Scholar
  58. Dudek, S. M., Bowen, W. D. and Bear, M. F. (1989). Postnatal changes in glutamate stimulated phosphoinositide turnover in rat neocortical synaptoneurosomes. Dev. Brain Res., 47, 123–128CrossRefGoogle Scholar
  59. Dumuis, A., Sebben, M., Haynes, L., Pin, J.-P. and Bockaert, J. (1988). NMDA receptors activate the arachidonic cascade system in striatal neurons. Nature, 336, 68–70PubMedCrossRefGoogle Scholar
  60. Durell, J. Garland, J. T. and Friedel, R. O. (1969). Acetylcholine action: biochemical aspects. Two major approaches to understanding the mechanism of action of acetylcholine are examined. Science, N.Y., 165, 862–866CrossRefGoogle Scholar
  61. Dupont, J.-L., Gardette, R. and Crepel, F. (1987). Postnatal development of the chemosensitivity of rat cerebellar Purkinje cells to excitatory amino acids. An in vitro study. Dev. Brain Res., 34, 59–68CrossRefGoogle Scholar
  62. Eberhard, D. A. and Holz, R. W. (1988). Intracellular Ca2+ activates phopholipase C. Trends Neurosci., 11, 517–520PubMedCrossRefGoogle Scholar
  63. Errington, M. L., Lynch, M. A. and Bliss, T. V. P. (1987). Long-term potentiation in the dentate gyrus: induction and increased glutamate release are blocked by D(-)aminophosphonovalerate. Neuroscience, 20, 279–284PubMedCrossRefGoogle Scholar
  64. Eusebi, F., Molinaro, M. and Caratsch, C. G. (1986). Effects of phorbol ester on spontaneous transmitter release at frog neuromuscular junction. Pflügers Arch., 406, 181–183PubMedCrossRefGoogle Scholar
  65. Fagg, G. E., Foster, A. C., Mena, E. E. and Cotman, C. W. (1982). Chloride and calcium ions reveal a pharmacologically distinct population of L-glutamate binding sites in synaptic membranes: correspondence between biochemical and electrophysiological data. J. Neurosci., 2, 958–965PubMedGoogle Scholar
  66. Fagg, G. E., Foster, A. C. and Ganong, A. H. (1986). Excitatory amino acid mechanisms and neurological function. Trends Pharmacol. Sci., 7, 357–363CrossRefGoogle Scholar
  67. Fagg, G. E. and Matus, A. (1984). Selective association of N-methyl-D-aspartate and quisqualate types of L-glutamate receptor with postsynaptic densities. Proc. Natl Acad. Sci. USA, 81, 6876–6880PubMedPubMedCentralCrossRefGoogle Scholar
  68. Fink, K., Göthert, M., Molderings, G. and Sclicker, E. (1989). N-Methyl-D-aspartate (NMDA) receptor mediated stimulation of noradrenaline release, but not release of other neurotransmitters in the rat brain cortex: receptor location, characterization and desensitization. Naunyn-Schmiedebergs Arch. Pathol. Exp. Pharmacol., 339, 514–521CrossRefGoogle Scholar
  69. Fischer, S. K. (1986). Inositol lipids and signal transduction at CNS muscarinic receptors. Trends Pharmacol. Sci. (Suppl.), 61–65Google Scholar
  70. Fischer, S. K. and Agranoff, B. W. (1987). Receptor activation and inositol lipid hydrolysis in neural tissues. J. Neurochem., 48, 999–1016CrossRefGoogle Scholar
  71. Fong, T. M., Davidson, N. and Lester, H. A. (1988). Properties of two classes of rat brain acidic amino acid receptors induced by distinct mRNA populations in Xenopus oocytes. Synapse, 2, 657–665PubMedCrossRefGoogle Scholar
  72. Folch, J. (1949). Brain diphosphoinositide, a new phosphatide having inositol metadiphosphate as a constituent. J. Biol. Chem., 177, 505–519PubMedGoogle Scholar
  73. Fonnum, F. (1984). Glutamate: a neurotransmitter in mammalian brain. J. Neurochem., 42, 1–11PubMedCrossRefGoogle Scholar
  74. Frelin, C., Cognard, C., Vigne, P. and Lazdunski, M. (1986). Tetrodotoxin-sensitive and tetrodotoxin-resistant Na+ channels differ in their sensitivity to Cd2+ and Zn2+. Eur. J. Pharmacol., 122, 245–250PubMedCrossRefGoogle Scholar
  75. Furuya, S., Ohmori, H., Shigemoto, T. and Sugiyama, H. (1989). Intracellular calcium mobilization triggered by a glutamate receptor in rat cultured hippocampal cells. J. Physiol. (Lond.), 414, 539–548CrossRefGoogle Scholar
  76. Gallo, V., Ciotti, M. T., Coletti, A., Aloisi, F. and Levi, G. (1982). Selective release of glutamate from cerebellar granule cells differentiating in culture. Proc. Natl Acad. Sci. USA, 79, 7919–7923PubMedPubMedCentralCrossRefGoogle Scholar
  77. Gallo, V., Suergiu, R., Giovannini, C. and Levi, G. (1987). Glutamate receptor subtypes in cultured cerebellar neurons: modulation of glutamate and γ-aminobutyric acid release. J. Neurochem., 49, 1801–1809PubMedCrossRefGoogle Scholar
  78. Garthwaite, J., Charles, S. L. and Chess-Williams, R. (1988). Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature, 336, 385–388PubMedCrossRefGoogle Scholar
  79. Garthwaite, G. and Garthwaite, J. (1989a). Differential dependence on Ca2+ of N-methyl-D-aspartate and quisqualate neurotoxicity in young rat hippocampal slices. Neurosci. Lett., 97, 316–322PubMedCrossRefGoogle Scholar
  80. Garthwaite, G. and Garthwaite, J. (1989b). Quisqualate neurotoxicity: a delayed, CNQX-sensitive process triggered by a CNQX-insensitive mechanism in young rat hippocampal slices. Neurosci. Lett., 99, 113–118PubMedCrossRefGoogle Scholar
  81. Gay, V. L. and Plant, T. M. (1987). N-Methyl-D,L-aspartate elicits hypothalamic gonadotropin-releasing hormone release in prepubertal male rhesus monkeys (Macaca mulatto).Endocrinology, 120, 2289–2296PubMedCrossRefGoogle Scholar
  82. Gilbert, M. E. (1988). The NMDA-receptor antagonist, MK-801, suppresses limbic kindling and kindled Scizures. Brain Res., 463, 90–99PubMedCrossRefGoogle Scholar
  83. Gilman, A. G. (1987). G proteins: transducers of receptor-generated signals. Ann. Rev. Biochem., 56, 615–649PubMedCrossRefGoogle Scholar
  84. Goddard, G. V., Mclntyre, D. C., and Leech, C. K. (1969). A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol., 25, 295–330PubMedCrossRefGoogle Scholar
  85. Godfrey, P. P., Wilkins, C. J., Tyler, W. and Watson, S. P. (1988). Stimulatory and inhibitory actions of excitatory amino acids on inositol phospholipid metabolism in rat cerebral cortex. Br. J. Pharmacol., 95, 131–138PubMedPubMedCentralCrossRefGoogle Scholar
  86. Goh, J. W. and Pennefather, P. S. (1989). A pertussis toxin-sensitive G protein in hippocampal long-term potentiation. Science, N.Y., 244, 980–983CrossRefGoogle Scholar
  87. Gomperts, B. D. (1983). Involvement of guanine nucleotide binding protein in the gating of Ca2+ by receptors. Nature, 306, 64–66PubMedCrossRefGoogle Scholar
  88. Gonzales, R. A. and Moerschbaecher, J. M. (1989). A phencyclidine recognition site is associated with N-methyl-D-aspartate inhibition of carbachol-stimulated phosphoinositide hydrolysis in rat cortical slices. Molec. Pharmacol., 35, 787–794Google Scholar
  89. Gonzales, R. A., Greger, P. H. Jr, Baker, S. P., Ganz, N. I., Bolden, C., Raizada, M. H. and Crews, F. T. (1987). Phorbol esters inhibit agonist-stimulated phosphoinositide hydrolysis in neuronal primary cultures. Dev. Brain Res., 37, 59–66CrossRefGoogle Scholar
  90. Greenamyre, J. T., Maragos, W. F., Albin, R. L., Penney, J. B. and Young, A. B. (1988). Glutamate transmission and toxicity in Alzheimer disease. Prog. Neuro-Psychopharmacol. Biol. Psychiat., 12, 421–430CrossRefGoogle Scholar
  91. Guiramand, J., Nourigat, A., Sassetti, I. and Récasens, M. (1989a). K+ differentially affects the excitatory amino acids-and carbachol-elicited inositol phosphate formation in rat brain synaptoneurosomes. Neurosci. Lett., 98, 222–228PubMedCrossRefGoogle Scholar
  92. Guiramand, J., Sassetti, I. and Récasens, M. (1989b). Developmental changes in the chemo-sensitivity of rat brain synaptoneurosomes to excitatory amino acids, estimated by inositol phosphate formation. Int. J. Dev. Neurosci., 7, 257–266PubMedCrossRefGoogle Scholar
  93. Gusovsky, F., Hollingsworth, E. B. and Daly, J. W. (1986). Regulation of phosphatidylinositol turnover in brain synaptoneurosomes: stimulatory effects of agents that enhance influx of sodium ions. Proc. Natl Acad. Sci. USA, 83, 3003–3007PubMedPubMedCentralCrossRefGoogle Scholar
  94. Gusovsky, F., McNeal, E. T. and Daly, J. W. (1987). Stimulation of phosphoinositide breakdown in brain synaptoneurosomes by agents that activate sodium influx: antagonism by tetrodotoxin, saxitoxin, and cadmium. Molec. Pharmacol., 32, 479–487Google Scholar
  95. Gusovsky, F. and Daly, J. W. (1988a). Formation of inositol phosphates in synaptoneurosomes of guinea pig brain: stimulatory effects of receptor agonists, sodium channel agents and sodium and calcium ionophores. Neuropharmacology, 27, 95–105PubMedCrossRefGoogle Scholar
  96. Gusovsky, F. and Daly, J. W. (1988b). Formation of second messengers in response to activation of ion channels in excitable cells. Cell. Molec. Neurobiol., 8, 157–169PubMedCrossRefGoogle Scholar
  97. Hamon, B. and Heinemann, U. (1988). Developmental changes in neuronal sensitivity to excitatory amino acids in area CA1 of the rat hippocampus. Dev. Brain Res., 38, 286–290CrossRefGoogle Scholar
  98. Harris, K. M. and Miller, R. J. (1989). CNQX (6-cyano-7-nitroquinoxaline-2,3-dione) antagonizes NMDA-evoked [3H]GABA release from cultured cortical neurons via an inhibitory action at the strychnine-insensitive glycine site. Brain Res., 489, 185–189PubMedCrossRefGoogle Scholar
  99. Harris, E. W. and Cotman, C. W. (1986). Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl-D-aspartate antagonists. Neurosci. Lett., 70, 132–137PubMedCrossRefGoogle Scholar
  100. Henn, F. A., Goldstein, M. N. and Hamberger, A. (1974). Uptake of the neurotransmitter glutamate by glia. Nature, 249, 663–664PubMedCrossRefGoogle Scholar
  101. Hertz, L., Schousboe, A., Boechler, N., Mukerji, S. and Fedoroff, S. (1978). Kinetic characteristics of glutamate uptake into normal astrocytes in cultures. Neurochem. Res., 3, 1–14PubMedCrossRefGoogle Scholar
  102. Heuschneider, G. and Schwartz, R. D. (1989). cAMP and forskolin decrease gamma-aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes. Proc. Natl Acad. Sci. USA, 86, 2938–2942PubMedPubMedCentralCrossRefGoogle Scholar
  103. Hoehn, K. and White, T. D. (1990). Role of excitatory amino acid receptors in K+-and glutamate-evoked release of endogenous adenosine from rat cortical slices. J. Neurochem., 54, 256–265PubMedCrossRefGoogle Scholar
  104. Hokin, L. E. (1985) Receptors and phosphoinositide-generated second messengers. Ann. Rev. Biochem., 54, 205–235PubMedCrossRefGoogle Scholar
  105. Hokin, M. R. and Hokin, L. E. (1953). Enzyme secretion and the incorporation of 32P into phospholipids of pancreas slices. J. Biol. Chem., 203, 961–977Google Scholar
  106. Hollingsworth, E. B., McNeal, E. T., Burtyon, J. L., Williams, R. J., Daly, J. W. and Crevelling, C. R. (1985). Biochemical characterization of a filtered synaptoneurosomes preparation from guinea pig cerebral cortex: cyclic adenosine 3′:5′-monophosphate-generating systems, receptors, and enzymes. J. Neurosci., 5, 2240–2253PubMedGoogle Scholar
  107. Hollingsworth, E. B., Sears, E. B., de la Cruz, R. A., Gusovsky, F. and Daly, J. W. (1986). Accumulations of cyclic AMP and inositol phosphates in guinea pig cerebral cortical synaptoneurosomes: enhancement by agents acting at sodium channels. Biochim. Biophys. Acta, 883, 15–25PubMedCrossRefGoogle Scholar
  108. Honoré, T., Davies, S. N., Drejer, J., Fletcher, E. J., Jacobsen, P., Lodge, D. and Nielsen, F. E. (1988). Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science, NY., 241, 701–703CrossRefGoogle Scholar
  109. Hood, W. F., Compton, R. P. and Monahan, J. B. (1989a). D-Cycloserine: a ligand for the N-methyl-D-aspartate coupled glycine receptor has partial agonist characteristics. Neurosci. Lett., 98, 91–95PubMedCrossRefGoogle Scholar
  110. Hood, W. F., Sun, E. T., Compton, R. P. and Monahan, J. B. (1989b). 1-aminocyclobutane-l-carboxylate (ACBC): a specific antagonist of the N-methyl-D-aspartate receptor coupled glycine receptor. Eur. J. Pharmacol., 161, 281–282PubMedCrossRefGoogle Scholar
  111. Huettner, J. E. (1989). Indole-2-carboxylic acid: a competitive antagonist of potentiation by glycine at the NMDA receptor. Science, N.Y., 243, 1611–1613CrossRefGoogle Scholar
  112. Iadarola, M. J., Nicoletti, F., Naranjo, J. R., Putman, F. and Costa, E. (1986). Kindling enhances the stimulation of inositol phospholipid hydrolysis elicited by ibotenic acid in rat hippocampal slices. Brain Res., 374, 174–178CrossRefGoogle Scholar
  113. Ito, I., Hirono, C, Yamagishi, S., Nomura, Y., Kaneko, S. and Sugiyama, H. (1988a). Roles of protein kinases in neurotransmitter responses in Xenopus oocytes injected with rat brain mRNA. J. Cell Physiol, 134, 155–160PubMedCrossRefGoogle Scholar
  114. Ito, I., Okada, D. and Sugiyama, H. (1988b). Pertussis toxin suppresses long-term potentiation of hippocampal mossy fiber synapses. Neurosci. Lett., 90, 181–185PubMedCrossRefGoogle Scholar
  115. Jackson, H. and Parks, T. N. (1982). Functional synapse elimination in the developing avian cochlear nerve axon branching. J. Neurosci., 2, 1736–1743PubMedGoogle Scholar
  116. Jackson, P. C. (1983). Reduced activity during development delays the normal rearrangement of synapses in the rabbit ciliary ganglion. J. Physiol (Lond.), 345, 319–327CrossRefGoogle Scholar
  117. Jibiki, L., Ohtani, T., Kubota, T. and Yamaguchi, N. (1981). Development of kindling in acute experiments and serial changes of field excitatory and inhibitory post-synaptic potentials during the ‘acute kindling’. Brain Res., 209, 210–215PubMedCrossRefGoogle Scholar
  118. Johnson, J. W. and Ascher, P. (1987). Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature, 325, 529–531PubMedCrossRefGoogle Scholar
  119. Jones, S. M., Snell, L. D. and Johnson, K. D. (1987). Phencyclidine selectively inhibits N-methyl-D-aspartate-induced hippocampal (3H)noradrenaline release. J. Pharmacol Exp. Ther., 240, 492–497PubMedGoogle Scholar
  120. Jope, R. S. and Li, X. (1989). Inhibition of inositol phospholipid synthesis and norepinephrinestimulated hydrolysis in rat brain slices by excitatory amino acids. Biochem. Pharmacol., 38, 589–596PubMedCrossRefGoogle Scholar
  121. Katan, M. and Parker, P. J. (1987). Purification of phosphoinositide-specific phospholipase C from a particulate fraction of bovine brain. Eur. J. Biochem., 168, 413–418PubMedCrossRefGoogle Scholar
  122. Katan, M., Kriz, R. W., Totty, N., Philp, R., Meldrum, E., Aldape, R. A., Knopf, J. L. and Parker, P. J. (1988). Determination of the primary structure of PLC-154 demonstrates diversity of phosphoinositide-specific phospholipase C activities. Cell, 54, 171–177PubMedCrossRefGoogle Scholar
  123. Kawai, N., Saito, M. and Ohsako, S. (1988). Differential expression of glutamate receptors in Xenopus oocytes injected with messenger RNA from lobster muscle. Neurosci. Lett., 95, 203–207PubMedCrossRefGoogle Scholar
  124. Kawai, N., Miwa, A. and Abe, T. (1982). Spider venom contains specific receptor blocker of glutaminergic synapses. Brain Res., 247, 169–171PubMedCrossRefGoogle Scholar
  125. Kemp, J. A., Foster, A. C., Leeson, P. D., Priestley, T., Tridgett, R. and Iyersen, L. L. (1988). 7-Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-D-aspartate receptor complex. Proc. Natl Acad. Sci. USA, 85, 6547–6550PubMedPubMedCentralCrossRefGoogle Scholar
  126. Kessler, M., Baudry, M. and Lynch, G. (1987). Use of cystine to distinguish glutamate binding from glutamate sequestration. Neurosci. Lett., 81, 221–226PubMedCrossRefGoogle Scholar
  127. Kikkawa, U. and Nishizuka, H. (1986). The role of protein kinase C in transmembrane signalling. Ann. Rev. Cell Biol., 2, 149–178PubMedCrossRefGoogle Scholar
  128. Krishtal, O. A., Petov, A. V., Smirnov, S. V. and Nowycky, M. C. (1989). Hippocampal synaptic plasticity induced by excitatory amino acids includes changes in sensitivity to the calcium channel blocker, ω-conotoxin. Neurosci. Lett., 102, 197–204PubMedCrossRefGoogle Scholar
  129. Labarca, R., Janowsky, A., Patel, J. and Paul, S. M. (1984). Phorbol esters inhibit agonist-induced [3H]inositol-l-phosphate accumulation in rat hippocampal slices. Biochem. Biophys. Res. Commun., 123, 703–709PubMedCrossRefGoogle Scholar
  130. Lan thorn, T. H., Ganong, A. H. and Cotman, C. W. (1984). 2-Amino-4-phosphonobutyrate selectively blocks mossy fiber-CA3 responses in guinea pig but not rat hippocampus. Brain Res., 290, 174–178CrossRefGoogle Scholar
  131. Laroche, S., Errington, M. L., Lynch, M. A. and Bliss, T. V. P. (1987). Increase in [3H]glutamate release from slices of dentate gyrus and hippocampus following classical conditioning in the rat. Behav. Brain Res., 25, 23–29PubMedCrossRefGoogle Scholar
  132. Lassing, I. and Lindberg, U. (1985). Specific interaction between phosphatidylinositol-4,5-bisphosphate and profilactin. Nature, 314, 472–474PubMedCrossRefGoogle Scholar
  133. Lassing, I. and Lindberg, U. (1988). Evidence that the phosphatidylinositol cycle is linked to cell motility. Exp. Cell Res., 174, 1–15PubMedCrossRefGoogle Scholar
  134. Leach, M. J., Marden, C. M., Miller, A. A., O’Donnel, R. A. and Weston, S. B. (1985). Changes in cortical amino acids during electrical kindling in rats. Neuropharmacology, 24, 937–940PubMedCrossRefGoogle Scholar
  135. Leach, M. J., O’Donnel, R. A., Collins, K. J., Marden, C. M. and Miller, A. A. (1987). Effect of cortical kindling on [3H]D-aspartate uptake and glutamate metabolism in rats. Epilepsy Res., 1, 145–148PubMedCrossRefGoogle Scholar
  136. Leeb-Lundberg, L. M. F., Cotecchia, S., Lomasney, J. W., DeBarnadis, J. F., Lefkowitz, R. J. and Caron, M. G. (1985). Phorbol esters promote alpha-1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism. Proc. Natl Acad. Sci. USA, 82, 5651–5655.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Lehman, J. and Scatton, B. (1982). Characterization of the excitatory amino acid receptormediated release of [3H]acetylcholine from rat striatal slices. Brain Res., 252, 77–89CrossRefGoogle Scholar
  138. Lehman, J., Tsai, C. and Wood, P. L. (1988). Homocysteic acid as a putative excitatory amino acid neurotransmitter. I. Postsynaptic characteristics at N-methyl-D-aspartate-type receptors on striatal cholinergic interneurons. J. Neurochem., 51, 1765–1770CrossRefGoogle Scholar
  139. Lenox, R. H., Hendley, D. and Ellis, J. (1988). Desensitization of muscarinic receptor-coupled phosphoinositide hydrolysis in rat hippocampus: comparisons with the αl adrenergic response. J. Neurochem., 50, 558–564PubMedCrossRefGoogle Scholar
  140. Li, X. and Jope, R. S. (1989). Inhibition of receptor-coupled phosphoinositide hydrolysis by sulfur-containing amino acids in rat brain slices. Biochem. Pharmacol., 38, 2781–2787PubMedCrossRefGoogle Scholar
  141. Linden, D. J. and Routtenberg, A. (1989). The role of protein kinase C in long-term potentiation: a testable model. Brain Res. Rev., 14, 279–296PubMedCrossRefGoogle Scholar
  142. Linden, J. and Delahunty, T. M. (1989). Receptors that inhibit phosphoinositide breakdown. Trends Pharmacol. Sci., 10, 114–120PubMedCrossRefGoogle Scholar
  143. Lochrie, M. A. and Simon, M. I. (1988). G protein multiplicity in eukaryotic signal transduction systems. Biochemistry, 27, 4957–4965PubMedCrossRefGoogle Scholar
  144. Lomo, T. (1966). Frequency potentiation of excitatory synaptic activity in the dentate area of the hippocampal formation. Acta Physiol. Scand., 68 (Suppl. 277), 128–133Google Scholar
  145. Lomo, T. (1971). Patterns of activation in a monosynaptic cortical pathway: the perforant path input to the dentate area of the hippocampal formation. Exp. Brain Res., 12, 18–45PubMedGoogle Scholar
  146. Lopez-Colomé, A. M. and Roberts, P. J. (1987). Effect of excitatory amino acid analogues on the release of D-[3H]aspartate from chick retina. Eur. J. Pharmacol., 142, 409–417PubMedCrossRefGoogle Scholar
  147. Lovinger, D. M., Colley, P. A., Akers, R. F., Nelson, R. B. and Routtenberg, A. (1986). Direct relation of long-term synaptic potentiation to phosphorylation of membrane protein F1 a substrate for membrane protein kinase C. Brain Res., 399, 205–211PubMedCrossRefGoogle Scholar
  148. Lovinger, D. M., Wong, Ka L., Murakami, K. and Routtenberg, A. (1987). Protein kinase C inhibitors eliminate hippocampal long-term potentiation. Brain Res., 436, 177–183PubMedCrossRefGoogle Scholar
  149. Luini, A., Goldberg, O. and Teichberg, V. I. (1981). Distinct pharmacological properties of excitatory amino acid receptors in the rat striatum: Study by Na+ efflux assay. Proc. Natl Acad. Sci. USA, 78, 3250–3254PubMedPubMedCentralCrossRefGoogle Scholar
  150. Lynch, G. and Baudry, M. (1987). Brain spectrin, calpain and long-term changes in synaptic efficacy. Brain Res. Bull., 18, 809–815PubMedCrossRefGoogle Scholar
  151. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. and Schottler, F. (1983). Intracellular injections of EGTA block the induction of hippocampal long-term potentiation. Nature, 305, 719–721PubMedCrossRefGoogle Scholar
  152. MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J. and Barker, J. L. (1986). NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature, 321, 519–522PubMedCrossRefGoogle Scholar
  153. McLennan, H. (1983). Receptors for the excitatory amino acids in the mammalian central nervous system. Prog. Neurobiol., 20, 251–271PubMedCrossRefGoogle Scholar
  154. Majerus, P. W., Connoly, T. M., Bansal, V. S., Inhorn, R. C., Ross, T. S. and Lips, D. L. (1988). Inositol phosphates: Synthesis and degradation. J. Biol. Chem., 263, 3051–3054PubMedGoogle Scholar
  155. Malenka, R. C., Madison, D. V. and Nicoll, R. A. (1986). Potentiation of synaptic transmission in the hippocampus by phorbol esters. Nature, 321, 175–177PubMedCrossRefGoogle Scholar
  156. Malenka, R. C., Kauer, J. A., Perkel, D. J. and Nicoll, R. A. (1989a). The impact of postsynaptic calcium on synaptic transmission: its role in long-term potentiation. Trends Neurosci., 12, 444–450PubMedCrossRefGoogle Scholar
  157. Malenka, R. C., Kauer, J. A., Perkel, D. J., Mauk, M. D., Kelly, P. T., Nicoll, R. A. and Waxham, M. N. (1989b). An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature, 340, 554–557PubMedCrossRefGoogle Scholar
  158. Malinow, R., Madison, D. V. and Tsien, R. W. (1988). Persistent protein kinase activity underlying long-term potentiation. Nature, 335, 820–824PubMedCrossRefGoogle Scholar
  159. Manzoni, O. J. J., Finiels-Marlier, F., Sassetti, I., Bockaert, J., le Peuch, C. and Sladeczek, F. A. J. (1990). The glutamate receptor of the Qp-type activates protein kinase C and is regulated by protein kinase C. Neurosci. Lett, (in press)Google Scholar
  160. Mariani, J. (1983). Elimination of synapses during the development of the central nervous system. Prog. Brain Res., 58, 383–392PubMedCrossRefGoogle Scholar
  161. Marvizon, J.-C, Lewin, A. H. and Skolnick, P. (1989). 1-Aminocyclopropane carboxylic acid: a potent and selective ligand for the glycine modulatory site of the N-methyl-D-aspartate receptor complex. J. Neurochem., 52, 992–994PubMedCrossRefGoogle Scholar
  162. Mattson, M. P., Dou, P., Kater, S. B. (1988a). Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J. Neurosci., 8, 2087–2100PubMedGoogle Scholar
  163. Mattson, M. P., Guthrie, P. B. and Kater, S. B. (1988b). Intracellular messengers in the generation and degeneration of hippocampal neuroarchitecture. J. Neurosci. Res., 21, 447–464PubMedCrossRefGoogle Scholar
  164. Mayer, M. L., MacDermott, A. B., Westbrook, G. L., Smith, S. and Barker, J. L. (1987). Agonist and voltage-gated calcium entry in cultured mouse spinal cord neurons under voltage clamp measured using arsenazo III. J. Neurosci., 7, 3230–3244PubMedGoogle Scholar
  165. Mayer, M. L. and Westbrook, G. L. (1985). The action of N-methyl-D-aspartic acid on mouse spinal neurones in culture. J. Physiol. (Lond.), 361, 65–90CrossRefGoogle Scholar
  166. Mayer, M., Westbrook, G. L. and Guthrie, P. B. (1984). Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature, 309, 261–263PubMedCrossRefGoogle Scholar
  167. Meldrum, B. S., Croucher, M. J., Badman, G. and Collins, J. F. (1983). Antiepileptic action of excitatory amino acid antagonists in the photosensitive baboon, Papio papio. Neurosci. Lett., 39, 101–104PubMedCrossRefGoogle Scholar
  168. Meldrum, E., Katan, M. and Parker, P. (1989). A novel inositol-phospholipid-specific phospholipase C. Eur. J. Biochem., 182, 673–677PubMedCrossRefGoogle Scholar
  169. Menéndez, N., Herreras, O., Sous, J. M., Herrantz, A. S. and Martin del Rio, R. (1989). Extracellular taurine increase in rat hippocampus evoked by specific glutamate receptor activation is related to the excitatory potency of glutamate agonists. Neurosci. Lett., 102, 64–69PubMedCrossRefGoogle Scholar
  170. Michell, R. H. (1975). Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta, 415, 81–147PubMedCrossRefGoogle Scholar
  171. Michell, R. H. (1980). Muscarinic acetylcholine receptors. In Cellular Receptors for Hormones and Neurotransmitters (ed. D. Schulster and A. Levitzki). Wiley, London, pp. 353–368Google Scholar
  172. Milani, D., Facti, L., Guidolin, D., Leon, A. and Skaper, S. D. (1989). Activation of polyphosphoinositide metabolism as a signal-transducing system coupled to excitatory amino acid receptors in astroglial cells. Glia, 2, 161–169PubMedCrossRefGoogle Scholar
  173. Miles, R. and Wong, R. K. S. (1987). Latent synaptic pathways revealed after tetanic stimulation in the hippocampus. Nature, 329, 724–726PubMedCrossRefGoogle Scholar
  174. Monaghan, D. T., Holets, V. R., Toy, D. W. and Cotman, C. W. (1983a). Anatomical distributions of four pharmacologically distinct 3H-L-glutamate binding sites. Nature, 306, 176–178PubMedCrossRefGoogle Scholar
  175. Monaghan, D. T., McMills, M. C., Chamberlin, A. R. and Cotman, C. W. (1983b). Synthesis of [3H]2-amino-4-phosphonobutyric acid and characterization of its binding to rat brain membranes: a selective ligand for the chloride/caltium-dependent class of L-glutamate binding sites. Brain Res., 278, 137–144PubMedCrossRefGoogle Scholar
  176. Moroni, F., Lombardi, G., Moneti, G. and Cortesini, C. (1983). The release and neosynthesis of glutamic acid are increased in experimental models of hepatic encephalopathy. J. Neurochem., 40, 850–855PubMedCrossRefGoogle Scholar
  177. Muller, D., Joly, M. and Lynch, G. (1988). Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. Science, N. Y., 242, 1694–1697CrossRefGoogle Scholar
  178. Murphy, D. E., Hitchinson, A. J., Hurt, S. D., Williams, M. and Sills, M. A. (1988). Characterization of the binding of [3H]-CGS 19755: a novel N-methyl-D-aspartate antagonist with nanomolar affinity in rat brain. Br. J. Pharmacol., 95, 932–938PubMedPubMedCentralCrossRefGoogle Scholar
  179. Murphy, S. N. and Miller, R. J. (1988). A glutamate receptor regulates Ca2+ mobilization in hippocampal neurons. Proc. Natl Acad. Sci. USA, 85, 8737–8741PubMedPubMedCentralCrossRefGoogle Scholar
  180. Nadler, V., Kloog, Y. and Sokolovsky, M. (1988). 1-Aminocyclopropane-l-carboxylic acid (ACC) mimics the effects of glycine on the NMD A receptor ion channel. Eur. J. Pharmacol., 157, 115–116PubMedCrossRefGoogle Scholar
  181. Nakanishi, O., Homma, Y., Kawasaki, H., Emori, Y., Suzuki, K. and Takenawa, T. (1988). Purification of two distinct types of phosphoinositide-specific phospholipase C from rat liver. Biochem. J., 256, 453–459PubMedPubMedCentralCrossRefGoogle Scholar
  182. Nathanson, N. M. (1987). Molecular properties of the muscarinic acetylcholine receptor. Ann. Rev. Neurosci., 10, 195–236PubMedCrossRefGoogle Scholar
  183. Nawy, S. and Copenhagen, D. R. (1987). Multiple classes of glutamate receptor on depolarizing bipolar cells in retina. Nature, 325, 56–58PubMedCrossRefGoogle Scholar
  184. Nicoletti, F. and Canonico, P. L. (1989). Glycine potentiates the stimulation of inositol phospholipid hydrolysis by excitatory amino acids in primary cultures of cerebellar neurons. J. Neurochem., 53, 724–727PubMedCrossRefGoogle Scholar
  185. Nicoletti, F., Iadarola, M. J., Wroblewski, J. T., and Costa, E. (1986a). Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: Developmental changes and interaction with alpha 1-adrenoceptors. Proc. Natl Acad. Sci. USA, 83, 1931–1935PubMedPubMedCentralCrossRefGoogle Scholar
  186. Nicoletti, F., Meek, J. L., Iadarola, M. J., Chuang, D. M., Roth, B. L. and Costa, E. (1986b). Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J. Neurochem., 46, 40–46PubMedCrossRefGoogle Scholar
  187. Nicoletti, F., Valerio, C, Pellegrino, C, Drago, F., Scapagnini, U. and Canonico, P. L. (1988). Spatial learning potentiates the stimulation of phosphoinositide hydrolysis by excitatory amino acids in rat hippocampal slices. J. Neurochem., 51, 725–729PubMedCrossRefGoogle Scholar
  188. Nicoletti, F., Wroblewski, J. T., Alho, H., Eva, C, Fadda, E. and Costa, E. (1987a). Lesions of putative glutamatergic pathways potentiate the increase of inositol phospholipid hydrolysis elicited by excitatory amino acids. Brain Res., 436, 103–112PubMedCrossRefGoogle Scholar
  189. Nicoletti, F., Wroblewski, J. T. and Costa, E. (1987b). Magnesium ions inhibit the stimulation of inositol phospholipid hydrolysis by endogenous excitatory amino acids in primary cultures of cerebellar granule cells. J. Neurochem., 48, 967–973PubMedCrossRefGoogle Scholar
  190. Nicoletti, F., Wroblewski, J. T., Iadarola, M. J. and Costa, E. (1986c). Serine-O-phosphate, an endogenous metabolite, inhibits the stimulation of inositol phospholipid hydrolysis elicited by ibotenic acid in rat hippocampal slices. Neuropharmacology, 25, 335–338PubMedCrossRefGoogle Scholar
  191. Nicoletti, F., Wroblewski, J. T., Novelli, A., Alho, H., Guidotti, A. and Costa, E. (1986d). The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. J. Neurosci., 6, 1905–1911PubMedGoogle Scholar
  192. Nishizuka, Y. (1984a). Turnover of inositol phospholipids and signal transduction. Science, N. Y., 233, 305–312CrossRefGoogle Scholar
  193. Nishizuka, Y. (1984b). The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature, 308, 693–698PubMedCrossRefGoogle Scholar
  194. Nishizuka, Y. (1988). The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature, 334, 661–665PubMedCrossRefGoogle Scholar
  195. Noble, E. P., Sincini, E., Bergman, D. and Bruggencate, G. T. (1989). Excitatory amino acids inhibit stimulated phosphoinositide hydrolysis in the rat prefrontal cortex. Life Sci., 44, 19–26PubMedCrossRefGoogle Scholar
  196. Nowak, L., Bregestovski, P., Ascher, P., Herbert, A. and Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurones. Nature, 307, 462–465PubMedCrossRefGoogle Scholar
  197. Nowycky, M. C., Fox, A. P. and Tsien, R. W. (1985). Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature, 316, 440–443PubMedCrossRefGoogle Scholar
  198. Oosawa, Y. and Yamagishi, S. (1989). Rat brain glutamate receptors activate chloride channels in Xenopus oocytes coupled by inositol trisphosphate and Ca2+. J. Physiol. (Lond.), 408, 223–232CrossRefGoogle Scholar
  199. Osborne, N. N. (1990). Stimulatory and inhibitory actions of excitatory amino acids on inositol phospholipid metabolism in rabbit retina. Evidence for a specific quisqualate receptor subtype associated with neurones. Exp. Eye Res., 50, 397–405PubMedCrossRefGoogle Scholar
  200. Palmer, E., Monaghan, D. T. and Cotman, C. W. (1988). Glutamate receptors and phosphoinositide metabolism: stimulation via quisqualate receptors is inhibited by N-methyl-D-aspartate receptor activation. Molec. Brain Res., 4, 161–165CrossRefGoogle Scholar
  201. Palmer, E., Monaghan, D. T. and Cotman, C. W. (1989): Trans-ACPD, a selective agonist of the phosphoinositide-coupled excitatory amino acid receptor. Eur. J. Pharmacol., 166, 585–587PubMedCrossRefGoogle Scholar
  202. Pardee, A. B. (1989). Gl events and regulation of cell proliferation. Science, N. Y., 246, 603–608CrossRefGoogle Scholar
  203. Pearce, B., Albrecht, J., Morrow, C. and Murphy, S. (1986). Astrocyte glutamate receptor activation promotes inositol phospholipid turnover and calcium flux. Neurosci. Lett., 72, 335–340PubMedCrossRefGoogle Scholar
  204. Pearce, I. A., Cambrey-Deakin, M. A. and Burgoyne, R. D. (1987). Glutamate acting on NMDA receptors stimulates neunte outgrowth from cerebellar granule cells. FEBS Lett., 223, 143–147PubMedCrossRefGoogle Scholar
  205. Peterson, D. W., Collins, J. F. and Bradford, H. F. (1983). The kindled amygdala model of epilepsy: anticonvulsant action of amino acid antagonists. Brain Res., 275, 169–172PubMedCrossRefGoogle Scholar
  206. Pin, J.-P., Bockaert, J. and Récasens, M. (1984a). The Ca2+/Cl dependent L-[3H]glutamate binding: a new receptor or a particular transport process? FEBS Lett., 175, 31–36PubMedCrossRefGoogle Scholar
  207. Pin, J.-P., Rumigny, J.-F., Bockaert, J. and Récasens, M. (1984b). Multiple Cl-independent binding sites for the excitatory amino-acids: glutamate, aspartate and cysteine sulfinate in rat brain membranes. Brain Res., 402, 11–20CrossRefGoogle Scholar
  208. Pin, J.-P., Van-Vliet, B. J. and Bockaert, J. (1988). NMDA-and kainate-evoked GABA release from striatal neurones differentiated in primary culture: differential blocking by phencyclidine. Neurosci. Lett., 87, 87–92PubMedCrossRefGoogle Scholar
  209. Purves, D. and Lichtman, J. W. (1980). Elimination of synapses in the developing nervous system. Science, N.Y., 210, 153–157CrossRefGoogle Scholar
  210. Ransom, R. W. and Deschenes, N. L. (1988). NMDA-induced [3H]norepinephrine release is modulated by glycine. Eur. J. Pharmacol., 156, 149–155PubMedCrossRefGoogle Scholar
  211. Récasens, M., Guiramand, J., Mayat, E., Saffiedine, S. and Sassetti, I. (1988a). Na+ ions are a prerequisite for the enhanced formation of inositol phosphates via the activation of the new quisqualate receptor (sAA2). 8th European Winter Conference on Brain Research, Tignes, France, p. 55 (Abstract)Google Scholar
  212. Récasens, M., Guiramand, J., Nourigat, A., Sassetti, I. and Devilliers, G. (1988b). A new quisqualate receptor subtype (sAA2) responsible for the glutamate-induced inositol phosphate formation in rat brain synaptoneurosomes. Neurochem. Int., 13, 463–467PubMedCrossRefGoogle Scholar
  213. Récasens, M., Pin, J.-P. and Bockaert, J. (1987a). Chloride transport blockers inhibit the chloride-dependent glutamate binding to rat brain membranes. Neurosci. Lett., 74, 211–216PubMedCrossRefGoogle Scholar
  214. Récasens, M., Sassetti, I., Nourigat, A., Sladeczek, F. and Bockaert, J. (1987b). Characterization of subtypes of excitatory amino acid receptors involved in the stimulation of inositol phosphate synthesis in rat brain synaptoneurosomes. Eur. J. Pharmacol, 141, 87–93PubMedCrossRefGoogle Scholar
  215. Récasens, M., Varga, V., Nanopoulos, D., Saadoun, F., Vincendon, G. and Benavides, J. (1982). Evidence for cysteine sulfinate as a neurotransmitter. Brain Res., 239, 153–173PubMedCrossRefGoogle Scholar
  216. Renard, D., Poggioli, J., Berthon, B. and Claret, M. (1987). How far does phospholipase C activity depend on the cell calcium concentration? Biochem. J., 243, 391–398PubMedPubMedCentralCrossRefGoogle Scholar
  217. Renaud, J.-F., Kazazoglou, T., Lombet, A., Chicheportiche, R., Jaimovitch, E., Romey, G. and Lazdunski, M. (1983). The Na+ channel in mammalian cardiac cells. Two kinds of tetrodotoxin receptors in rat heart membranes. J. Biol. Chem., 258, 8799–8805PubMedGoogle Scholar
  218. Roberts, P. J. and Anderson, S. D. (1979). Stimulatory effect of L-glutamate and related amino acids on [3H]dopamine release from rat striatum: an in vitro model for glutamate actions. J. Neurochem., 32, 1539–1545PubMedCrossRefGoogle Scholar
  219. Rothman, S. M. (1985). The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J. Neurosci., 5, 1483–1489PubMedGoogle Scholar
  220. Savage, D. D., Werling, L. L., Nadler, J. V. and McNamara, J. O. (1982). Selective increase in L-[3H]glutamate binding to a quisqualate-sensitive site on hippocampal synaptic membrane after angular bundle kindling. Eur. J. Pharmacol., 85, 255–256PubMedCrossRefGoogle Scholar
  221. Schmidt, B. H., Weiss, S., Sebben, M., Kemp, D. E., Bockaert, J. and Sladeczek, F. (1987). Dual action of excitatory amino acids on the metabolism of inositol phosphates in striatal neurons. Molec. Pharmacol., 32, 364–368Google Scholar
  222. Schmidt, C. J. and Taylor, V. L. (1988). Release of [3H]norepinephrine from rat hippocampal slices by N-methyl-D-aspartate: comparison of the inhibitory effect of Mg2+ and MK-801. Eur. J. Pharmacol, 156, 111–120PubMedCrossRefGoogle Scholar
  223. Schoepp, D. D. (1989). Protein kinase C-mediated inhibition of excitatory amino acid-stimulated phosphoinositide hydrolysis in the neonatal rat hippocampus. Neurochem. Int., 15, 131–136PubMedCrossRefGoogle Scholar
  224. Schoepp, D. D. and Hillman, C. C. (1990). Developmental and pharmacological characterization of quisqualate, ibotenate, and trans-1-amino-l,3-cyclopentanedicarboxylic acid stimulations of phosphoinositide hydrolysis in rat cortical brain slices. Biogenic Amines (in press)Google Scholar
  225. Schoepp, D. D. and Johnson, B. G. (1988a). Excitatory amino acid agonist-antagonist interactions at 2-amino-4-phosphonobutyric acid-sensitive quisqualate receptors coupled to phosphoinositide hydrolysis in slices of rat hippocampus. J. Neurochem., 50, 1605–1613PubMedCrossRefGoogle Scholar
  226. Schoepp, D. D. and Johnson, B. G. (1988b). Selective inhibition of excitatory amino acid-stimulated phosphoinositide hydrolysis in the rat hippocampus by activation of protein kinase C. Biochem. Pharmacol, 37, 4299–4305PubMedCrossRefGoogle Scholar
  227. Schoepp, D. D. and Johnson, B. G. (1989a). Comparison of excitatory amino acid-stimulated phosphoinositide hydrolysis and N-[3H]acetylaspartylglutamate binding in rat brain: selective inhibition of phosphoinositide hydrolysis by 2-amino-3-phosphonopropionate. J. Neurochem., 53, 273–278PubMedCrossRefGoogle Scholar
  228. Schoepp, D. D. and Johnson, B. G. (1989b). Inhibition of excitatory amino acid-stimulated phosphoinositide hydrolysis in the neonatal rat hippocampus by 2-amino-3-phosphonopropionate. J. Neurochem., 53, 1865–1870PubMedCrossRefGoogle Scholar
  229. Seren, M. S., Aldinio, C, Zanoni, R., Leon, A. and Nicoletti, F. (1989). Stimulation of inositol phospholipid hydrolysis by excitatory amino acids is enhanced in brain slices from vulnerable regions after transient global ischemia. J. Neurochem., 53, 1700–1705PubMedCrossRefGoogle Scholar
  230. Shapira, R., Silberberg, S. D., Ginsburg, S. and Rahamimoff, R. (1987). Activation of protein kinase C augments evoked transmitter release. Nature, 325, 58–60PubMedCrossRefGoogle Scholar
  231. Shears, S. B. (1989). Metabolism of the inositol phosphates produced upon receptor activation. Biochem. J., 260, 313–324PubMedPubMedCentralCrossRefGoogle Scholar
  232. Shuntoh, H., Taniyama, K. and Tanaka, C. (1989). Involvement of protein kinase C in the Ca2+-dependent vesicular release of GAB A from central and enteric neurons of the guinea pig. Brain Res., 483, 384–388PubMedCrossRefGoogle Scholar
  233. Simon, R. P., Swan, J. H., Griffiths, T. and Meldrum, B. S. (1984). Blockade of N-methyl-D-aspartate receptors may protect against ischemic brain damage in the brain. Science, N. Y., 226, 850–852CrossRefGoogle Scholar
  234. Sladeczek, F., Pin, J.-P., Récasens, M., Bockaert, J. and Weiss, S. (1985). Glutamate stimulates inositol phosphate formation in striatal neurons. Nature, 317, 717–719PubMedCrossRefGoogle Scholar
  235. Sladeczek, F., Récasens, M. and Bockaert, J. (1988). A new mechanism for glutamate receptor action: phosphoinositide hydrolysis. Trends Neurosci., 11, 545–549PubMedCrossRefGoogle Scholar
  236. Slaughter, M. M. and Miller, R. F. (1981). 2-Amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science, N. Y., 211, 182–184CrossRefGoogle Scholar
  237. Smart, T. G. (1989). Excitatory amino acids: the involvement of second messengers in signal transduction process. Cell. Molec. Neurobiol., 9, 193–206PubMedCrossRefGoogle Scholar
  238. Snell, L. D. and Johnson, K. M. (1988). Cycloleucine competitively antagonizes the strychnine-insensitive glycine receptor. Eur. J. Pharmacol., 151, 165–166PubMedCrossRefGoogle Scholar
  239. Snell, L. D. and Johnson, K. M. (1986). Characterization of the inhibition of excitatory amino acid-induced neurotransmitter release in the rat striatum by phencyclidine-like drugs. J. Pharmacol. Exp. Ther., 238, 938–946PubMedGoogle Scholar
  240. Stone, T. W. and Burton, N. R. (1988). NMDA receptors and ligands in the vertebrate CNS. Prog. Neurobiol., 30, 333–368PubMedCrossRefGoogle Scholar
  241. Sugiyama, H., Ito, I. and Hirono, C. (1987). A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature, 325, 531–533PubMedCrossRefGoogle Scholar
  242. Sugiyama, H., Ito, I. and Watanabe, M. (1989). Glutamate receptor subtypes may be classified into two major categories: a study on Xenopus oocytes injected with rat brain mRNA. Neuron, 3, 129–132PubMedCrossRefGoogle Scholar
  243. Suh, P.-G., Ryu, S. H., Moon, K. H., Suh, H. W. and Rhee, S. G. (1988). Cloning and sequence of multiple forms of phospholipase C. Cell, 54, 161–169PubMedCrossRefGoogle Scholar
  244. Swanson, L., Teyler, T. and Thompson, R. F. (1982). Hippocampal long-term potentiation mechanisms and implications for memory based on a NRP worksession. Neurosci. Res. Prog. Bull, 20, 613–769Google Scholar
  245. Szekely, A. M., Barbaccia, M. L., Alho, H. and Costa, E. (1989). In primary cultures of cerebellar granule cells the activation of N-methyl-D-aspartate-sensitive glutamate receptors induces c-fos mRNA expression. Molec. Pharmacol., 35, 401–408Google Scholar
  246. Tapia-Arancibia, L. and Astier, H. (1989). Actions of excitatory amino acids on somatostatin release from cortical neurons in primary cultures. J. Neurochem., 53, 1134–1141PubMedCrossRefGoogle Scholar
  247. Thompson, W (1983). Synapse elimination in neonatal rat muscle is sensitive to pattern of muscle use. Nature, 302, 614–616PubMedCrossRefGoogle Scholar
  248. Tremblay, E., Roisin, M. P., Represa, A., Charriaut-Marlangue, C. and Ben-Ari, Y. (1988). Transient increased density of NMDA binding sites in the developing rat hippocampus. Brain Res., 461, 393–396PubMedCrossRefGoogle Scholar
  249. Tuff, L. P., Racine, R. J. and Adamac, R. (1983). The effect of kindling on GABA mediated inhibition in the dentate gyrus of the rat. I. Paired pulse depression. Brain Res., 277, 79–90PubMedCrossRefGoogle Scholar
  250. Wakade, A. R., Malhotra, R. K. and Wakade, T. D. (1985). Phorbol ester, an activator of protein kinase C, enhances calcium-dependent release of sympathetic neurotransmitter. Naunyn-Schmiedebergs Arch. Pathol. Exp. Pharmacol, 331, 122–124CrossRefGoogle Scholar
  251. Watkins, J. C. and Evans, R. H. (1981). Excitatory amino acid transmitters. Ann. Rev. Pharmacol. Toxicol., 21, 165–204CrossRefGoogle Scholar
  252. Watkins, J. C. and Olvermann, H. J. (1987). Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci., 10, 265–272CrossRefGoogle Scholar
  253. Weiss, S. (1988). Excitatory amino acid-evoked release of gamma-[3H]aminobutyric acid from striatal neurons in primary culture. J. Neurochem., 51, 435–411PubMedCrossRefGoogle Scholar
  254. Weiss, S. (1989). Two distinct quisqualate receptor systems are present on striatal neurons. Brain Res., 491, 189–193PubMedCrossRefGoogle Scholar
  255. Weiss, S., Ellis, J., Hendley, D. D. and Lenox, R. H. (1989). Translocation and activation of protein kinase C in striatal neurons in primary culture: relationship to phorbol dibutyrate actions on the inositol phosphate generating system and neurotransmitter release. J. Neurochem., 52, 530–536PubMedCrossRefGoogle Scholar
  256. Wieloch, T. (1985). Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate antagonist. Science, N.Y., 230, 681–683CrossRefGoogle Scholar
  257. Williams, J. H., Errington, M. L., Lynch, M. A. and Bliss, T. V. P. (1989). Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature, 341, 739–742PubMedCrossRefGoogle Scholar
  258. Williams, K., Romano, C. and Molinoff, P. B. (1989). Effects of polyamines on the binding of [3H]MK-801 to the N-methyl-D-aspartate receptor: pharmacological evidence for the existence of a polyamine recognition site. Molec. Pharmacol., 36, 575–581Google Scholar
  259. Wroblewski, J. T., Nicoletti, F., Fadda, E. and Costa, E. (1987). Phencyclidine is a negative allosteric modulator of signal transduction at two subclasses of excitatory amino acid receptors. Proc. Natl Acad. Sci. USA, 84, 5068–5072PubMedPubMedCentralCrossRefGoogle Scholar
  260. Yamada, N., Akiyama, K. and Otsuki, S. (1989). Hippocampal kindling enhances excitatory amino acid receptor-mediated polyphosphoinositide hydrolysis in the hippocampus and amygdala/pyriform cortex. Brain Res., 490, 126–132PubMedCrossRefGoogle Scholar
  261. Yamamoto, C, Sawada, S. and Takada, S. (1983). Suppressing action of 2-amino-4-phosphonobutyric acid on mossy fiber-induced excitation in the guinea pig hippocampus. Exp. Brain Res., 51, 128–134PubMedGoogle Scholar
  262. Yaksh, T. L., Furui, T., Kanawati, I. S. and Go, V. L. W. (1987). Release of cholecystokinin from rat cerebral cortex in vivo: role of GABA and glutamate receptor systems. Brain Res., 406, 207–214PubMedCrossRefGoogle Scholar
  263. Young, A. M. J., Crowder, J. M. and Bradford, H. F. (1988). Potentiation by kainate of excitatory amino acid release in striatum: complementary in vivo and in vitro experiments. J. Neurochem., 50, 337–345PubMedCrossRefGoogle Scholar
  264. Zurgil, N., Yarom, M. and Zisapel, N. (1986). Concerted enhancement of calcium influx, neurotransmitter release and protein phosphorylation by a phorbol ester in cultured brain neurons. Neuroscience, 19, 1255–1264PubMedCrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1991

Authors and Affiliations

  • Max Récasens
    • 1
  • Ebrahim Mayat
    • 1
  • Janique Guiramand
    • 1
  1. 1.Laboratoire de Neurobiologie de l’Audition (Université Montpellier II)MontpellierFrance

Personalised recommendations