Advertisement

Studying the Acetylcholine Receptor with Monoclonal Antibodies

  • Socrates J. Tzartos
Chapter

Abstract

Although not all expectations for the use of monoclonal antibodies (mAbs) have been satisfied, undoubtedly they have proved an invaluable set of tools in biomedical research. The early availability of purified acetylcholine receptor (AChR) in significant amounts and the involvement of anti-AChR antibodies in the disease myasthenia gravis (MG) were adequate motives for anti-AChR mAbs to be prepared by several groups from the first years of the mAb era. As was the case with mAbs raised against many other antigens, some of these mAbs have been used extensively, thus significantly contributing to the advancement of AChR and MG research, whereas others proved much less valuable tools.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agius, M. A., Geannopoulos, C. J., Fairclough, R. H. and Richmann, D. P. (1988). Monoclonal anti-idiotopic antibodies against myasthenia-inducing anti-acetylcholine receptor monoclonal antibodies. Preponderance of nonparatope-directed antibodies affecting antigen binding. J. Immunol, 140, 62–68PubMedGoogle Scholar
  2. Amit, A. G., Mariuzza, R. A., Phillips, S. E. V. and Poljak, R. (1986). Three-dimensional structure of an antigen-antibody complex at 2.8 Å resolution. Science, N. Y., 233, 747–753CrossRefGoogle Scholar
  3. Anderson, D., Blobel, G., Tzartos, S. J., Gullick, W. and Lindstrom, J. (1983). Transmembrane orientation of an early biosynthetic form of acetylcholine receptor subunit determined by proteolytic dissection in conjunction with monoclonal antibodies. J. Neurosci., 3, 1773–1784PubMedGoogle Scholar
  4. Barkas, T., Gabriel, J. M., Juillerat, M., Kokla, A. and Tzartos, S. J. (1986). Localization of the main immunogenic region of the nicotinic acetylcholine receptor. FEBS Lett., 196, 237–241PubMedCrossRefGoogle Scholar
  5. Barkas, T., Gabriel, J.-M., Mauron, A., Hughes, G. J., Roth, B., Alliod, C, Tzartos, S. J. and Ballivet, M. (1988). Fine localisation of the main immunogenic region of the nicotinic acetylcholine receptor to residues 61-76 of the a subunit. J. Biol. Chem., 263, 5916–5920PubMedGoogle Scholar
  6. Barkas, T., Mauron, A., Roth, B., Alliod, C, Tzartos, S. J. and Ballivet, M. (1987). Mapping the main immunogenic region and toxin binding site of the nicotinic acetylcholine receptor. Science, N.Y., 235, 77–80CrossRefGoogle Scholar
  7. Barnard, E. A., Darlison, M. G. and Seeburg, P. (1987). Molecular biology of the GABA-A receptor: the receptor/channel superfamily. Trends Neurosci., 10, 502–509CrossRefGoogle Scholar
  8. Berzofsky, J. A. (1984). Monoclonal antibodies as probes of antigenic structure. In Monoclonal and Anti-idiotypic Antibodies: Probes for Receptor Structure and function (ed. J. C. Venter, C. M. Fraser and J. Lindstrom) Alan R. Liss, New York, pp. 1–19Google Scholar
  9. Blair, D. A., Richman, D. P., Taves, C. J. and Koethe, S. (1986). Monoclonal antibodies to acetylcholine receptor secreted by human x human hybridomas derived from lymphocytes of a patient with myasthenia gravis. Immunol. Invest., 15, 351–364PubMedCrossRefGoogle Scholar
  10. Blount, P. and Merlie, J. P. (1988). Native folding of an acetylcholine receptor a subunit expressed in the absence of other receptor subunits. J. Biol. Chem., 263, 1072–1080PubMedGoogle Scholar
  11. Brisson, A. and Unwin, P. (1985). Quaternary structure of the acetylcholine receptor. Nature, 315, 474–477PubMedCrossRefGoogle Scholar
  12. Cauley, K., Agranoff, B. W. and Goldman, D. (1989). Identification of a novel nicotinic acetylcholine receptor structural subunit expressed in goldfish retina. J. Cell Biol., 108, 637–645PubMedCrossRefGoogle Scholar
  13. Changeux, J.-P. and Revah, F. (1987). The acetylcholine receptor molecule: allosteric sites and the ion channel. TINS, 10, 245–250Google Scholar
  14. Chase, B. A., Holliday, J., Reese, J. H., Chun, L. L. Y. and Hawrot, E. (1987). Monoclonal antibodies with defined specificities for Torpedo nicotinic acetylcholine receptor cross-react with Drosophila neural tissue. Neuroscience, 21, 959–976PubMedCrossRefGoogle Scholar
  15. Chinchetru, M. A., Marquez, J., Garcia-Borron, J. C, Richman, D. P. and Martinez-Carrion, M. (1989). Interaction of nicotinic acetylcholine receptor with 2 monoclonal antibodies recognizing different epitopes. Biochemistry, 28, 4222–4229PubMedCrossRefGoogle Scholar
  16. Claudio, T., Green, W. N., Hartman, D. S., Hayden, D., Paulson, H. L., Sigworth, F. J., Sine, S. M. and Swedlund, A. (1987). Genetic reconstitution of functional acetylcholine receptor channels in mouse fibroblasts. Science, N.Y., 238, 1688–1693CrossRefGoogle Scholar
  17. Colman, P. M., Laver, W. G., Varghese, J. N., Baker, A. T., Tulloch, P. A., Air, G. M. and Webster, R. G. (1987). Three-dimensional structure of a complex of antibody with influenza virus neuraminidase. Nature, 326, 358–363PubMedCrossRefGoogle Scholar
  18. Conti-Tronconi, B., Tzartos, S. J. and Lindstrom, J. (1981). Monoclonal antibodies as probes of acetylcholine receptor structure. II. Binding to native receptor. Biochemistry, 20, 2181–2191PubMedCrossRefGoogle Scholar
  19. Cung, M. T., Marraud, M., Hadjidakis, I., Bairaktari, H., Sakarellos, C., Kokla, A. and Tzartos, S. (1989). 2D-1H NMR study of a synthetic peptide containing the main immunogenic region of the Torpedo acetylcholine receptor. Biopolymers, 28, 465–478PubMedCrossRefGoogle Scholar
  20. Cunningham, B.C., Jhurani, P., Ng, P. and Wells, J. A. (1989). Receptor and antibody epitopes in human growth hormone identified by homolog-scanning mutagenesis. Science, N. Y., 243, 1330–1336CrossRefGoogle Scholar
  21. Das, M. K. and Lindstrom, J. (1989). The main immunogenic region of the nicotinic acetylcholine receptor. Interaction of monoclonal antibodies with synthetic peptides. Biochem. Biophys. Res. Commun., 165, 865–871PubMedCrossRefGoogle Scholar
  22. De Baets, M. H., Verschuuren, J. and Van Brenda Vriesman, P. J. C. (1988). Experimental autoimmune myasthenia gravis. Monogr. Allergy, 25, 1–11PubMedGoogle Scholar
  23. Dipaola, M., Czajkowski, C. and Karlin, A. (1989). The sidedness of the COOH terminus of the acetylcholine receptor-delta-subunit, J. Biol. Chem., 264, 15457–15463PubMedGoogle Scholar
  24. Donnelly, D., Mihovilovic, M., Gonzalez-Ros, J. M., Ferragut, J. A., Richman, D. and Martinez-Carrion, M. (1984). A noncholinergic site-directed monoclonal antibody can impair agonist-induced ion flux in Torpedo californica acetylcholine receptor. Proc. Natl Acad. Sci. USA, 81, 7999–8003PubMedPubMedCentralCrossRefGoogle Scholar
  25. Drachman, D. (Ed.) (1987). Myasthenia Gravis. Ann. NY. Acad. Sci., 505, 1–914Google Scholar
  26. Drachman, D. B., Adams, R. N., Josifek, L. F. and Self, S. G. (1982). Functional activities of autoantibodies to acetylcholine receptors and the clinical severity of myasthenia gravis. New Engl. J. Med., 307, 769–775PubMedCrossRefGoogle Scholar
  27. Dwyer, D. S., Vakil, M., Bradley, R. J., Oh, S. J. and Kearney, J. F. (1987). A possible cause of myasthenia gravis: Idiotypic networks involving bacterial antigens. Ann. N.Y. Acad. Sci., 505, 461–471PubMedCrossRefGoogle Scholar
  28. Engel, A. G. (1984). Myasthenia gravis and myasthenic syndromes. Ann. Neurol., 16, 519–533PubMedCrossRefGoogle Scholar
  29. Erlanger, B. F., Cleveland, W. L., Wassermann, N. H., Ku, H. H., Hill, B. L., Sarangarajan, R. and Penn, A. S. (1987). Autoantibodies to receptors by an autoantiidiotypic route. Ann. N.Y. Acad. Sci., 505, 416–422PubMedCrossRefGoogle Scholar
  30. Fels, G., Breer, H. and Maelicke, A. (1983). Are there nicotinic acetylcholine receptors in invertebrate ganglionic tissue? In Toxins as Tools in Neurochemistry (ed. F. Huch and Y. A. Ovchinnikov). W. de Gruyter, Berlin, pp. 124–140Google Scholar
  31. Fels, G., Plumer-Wilk, R., Schreiber, M. and Maelicke, A. (1986). A monoclonal antibody interfering with binding and response of the acetylcholine receptor. J. Biol. Chem., 261, 15746–15754PubMedGoogle Scholar
  32. Froehner, S. C., Douville, K., Klink, S. and Culp, W. J. (1983). Monoclonal antibodies to cytoplasmic domains of the acetylcholine receptor. J. Biol. Chem., 258, 7112–7120PubMedGoogle Scholar
  33. Fujita, N., Nelson, N., Fox, T. D., Claudio, T., Lindstrom, J., Riezman, H. and Hess, G. P. (1986). Biosynthesis of the Torpedo californica acetylcholine receptor a subunit in yeast. Science, N. Y., 231, 1284–1287CrossRefGoogle Scholar
  34. Geysen, H. M., Meloen, H. R. and Barteling, S. J. (1984). Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl Acad. Sci. USA, 81, 3998–4002PubMedPubMedCentralCrossRefGoogle Scholar
  35. Giraudat, J., Dennis, M., Heidmann, T., Haumont, P.-Y., Lederer, F. and Changeux, J.-P. (1987). Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: [3-H]chlorpromazine labels homologous residues in the β and δ chains. Biochemistry, 26, 2410–2418PubMedCrossRefGoogle Scholar
  36. Gomez, C. M. and Richman, D. P. (1983). Anti-acetylcholine receptor antibodies directed against the α-bungarotoxin binding site induce a unique form of experimental myasthenia. Proc. Natl Acad. Sci. USA, 80, 4089–4093PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gotti, C, Frigerio, F., Bolognesi, M., Longhi, R., Racchetti, G. and Clementi, F. (1988). Nicotinic acetylcholine receptor: a structural model for a subunit peptide 188-201, the putative binding site for cholinergic agents. FEBS Lett., 228, 118–122PubMedCrossRefGoogle Scholar
  38. Gullick, W. J., Tzartos, S. J. and Lindstrom, J. (1981). Monoclonal antibodies as probes of acetylcholine receptor structure. I. Peptide mapping. Biochemistry, 20, 2173–2180PubMedCrossRefGoogle Scholar
  39. Harvey, A. L., Barkas, T., Harrison, R. and Lunt, G. G. (1978). Inhibition of receptor function in cultured chick myotubes by antiserum to purified Torpedo acetylcholine receptor and myasthenic sera. In The Biochemistry of Myasthenia Gravis and Muscular Dystrophy (ed. G. G. Lunt, and R. M. Marchbanks). Academic Press, London, pp. 167–175Google Scholar
  40. Heidenreich, F., Vincent, A., Roberts, A. and Newsom-Davis, J. (1988a). Epitopes on human acetylcholine receptor defined by monoclonal antibodies and myasthenia gravis sera. Autoimmunity, 1, 285–297PubMedCrossRefGoogle Scholar
  41. Heidenreich, F., Vincent, A., Willcox, N. and Newsom-Davis, J. (1988b). Anti-acetylcholine receptor antibody specificities in serum and in thymic cell culture supernatants from myasthenia gravis patients. Neurology, 38, 1784–1788PubMedCrossRefGoogle Scholar
  42. Heinemann, S., Bevan, S., Kullberg, R., Lindstrom, J. and Rice, J. (1977). Modulation of the acetylcholine receptor by anti-receptor antibodies. Proc. Natl Acad. Sci. USA, 74, 3090–3094PubMedPubMedCentralCrossRefGoogle Scholar
  43. Henley, J. M., Lindstrom, J. M. and Oswald, R. E. (1988). Interaction of monoclonal antibodies with α-bungarotoxin and (-)-nicotine binding sites in goldfish brain. J. Biol. Chem., 263, 9686–9691PubMedGoogle Scholar
  44. Hertling-Jaweed, S., Bandini, G., Muller-Fahrnow, A., Dommes, V. and Hucho, F. (1988). Rapid preparation of the nicotinic acetylcholine receptor for crystallization in detergent solution. FEBS Lett., 241, 29–32PubMedCrossRefGoogle Scholar
  45. Higgins, L. S. and Berg, D. K. (1987). Immunological identification of a nicotinic acetylcholine receptor on bovine chromaffin cells. J. Neurosci., 7, 1792–1798PubMedGoogle Scholar
  46. Hohlfeld, R., Toyka, K. V., Heininger, K., Grosse-Wilde, H. and Kalies, I. (1984). Autoimmune human T lymphocytes specific for acetylcholine receptor. Nature, 310, 244–246PubMedCrossRefGoogle Scholar
  47. Hohlfeld, R., Toyka, K., Tzartos, S. J., Carson, W. and Conti-Tronconi, B. (1987). Human T helper lymphocytes in myasthenia gravis recognize the nicotinic receptor α subunit. Proc. Natl Acad. Sci. USA, 84, 5379–5383PubMedPubMedCentralCrossRefGoogle Scholar
  48. Houghten, R. A. (1985). General method for the rapid solid-phase synthesis of large numbers of peptides: Specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl Acad. Sci. USA, 82, 5131–5135PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hucho, F., Oberthur, W. and Lottspeich, F. (1986). The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices M II of the receptor subunits. FEBS Lett., 205, 137–142PubMedCrossRefGoogle Scholar
  50. Jacob, M. H. and Berg, D. K. (1988). The distribution of acetylcholine receptors in chick ciliary ganglion neurons following disruption of ganglionic connections. J. Neurosci, 8, 3838–3849PubMedGoogle Scholar
  51. Kamo, I., Furukawa, S., Tada, A., Mano, Y., Iwasaki, Y., Furuse, T., Ito, N., Hayashi, K. and Satoyoshi, E. (1982). Monoclonal antibody to acetylcholine receptor: cell line established from thymus of patient with myasthenia gravis. Science, N. Y., 215, 995–997CrossRefGoogle Scholar
  52. Killen, J., Hochschwender, S. and Lindstrom, J. (1985). The main immunogenic region of acetylcholine receptors does not provoke the formation of antibodies to a predominant idiotype. J. Neuroimmunol., 9, 229–241PubMedCrossRefGoogle Scholar
  53. Kirchner, T., Tzartos, S., Hoppe, F., Schalke, B., Wekerle, H. and Muller-Hermelink, H. K. (1988). Pathogenesis of myasthenia gravis. Acetylcholine receptor-related antigenic determinants in tumor-free thymuses and thymic epithelial tumors. Am. J. Pathol., 130, 268–279PubMedPubMedCentralGoogle Scholar
  54. Kohler, G. and Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256, 495–497PubMedCrossRefGoogle Scholar
  55. Kohler, G. and Milstein, C. (1976). Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur. J. Immunol., 6, 511–519PubMedCrossRefGoogle Scholar
  56. Kordossi, A. and Tzartos, S. J. (1987). Conformation of cytoplasmic segments of acetylcholine receptor α and β subunits probed by monoclonal antibodies. Sensitivity of the antibody; competition approach. EMBO Jl, 6, 1605–1610Google Scholar
  57. Kordossi, A. A. and Tzartos, S. J. (1989). Monoclonal antibodies against the main immunogenic region of the acetylcholine receptor. Mapping on the intact molecule. J. Neuroimmunol., 23, 35–40PubMedCrossRefGoogle Scholar
  58. Kouvelas, E., Dichter, M. A. and Greene, L. A. (1978). Chick sympathetic neurons develop receptors for α-bungarotoxin in vitro, but the toxin does not block nicotinic receptors. Brain Res., 154, 83–93PubMedCrossRefGoogle Scholar
  59. Kubalek, E., Ralston, S., Lindstrom, J. and Unwin, N. (1987). Location of subunits within the acetylcholine receptor by electron image analysis of tubular crystals from Torpedo marmorata. J. Cell Biol., 105, 9–18PubMedCrossRefGoogle Scholar
  60. La Rochelle, W., Wray, B., Sealock, R. and Froehner, S. (1985). Immunochemical demonstration that amino acids 360–377 of the acetylcholine receptor γ subunit are cytoplasmic. J. Cell Biol., 100, 684–691CrossRefGoogle Scholar
  61. Lefvert, A. K., Pirskanen, R. and Svanborg, E. (1985). Anti-idiotypic antibodies, acetylcholine receptor antibodies and disturbed neuromuscular function in healthy relatives to patients with myasthenia gravis. J. Neuroimmunol, 9, 41–53PubMedCrossRefGoogle Scholar
  62. Lennon, V. A. and Griesmann, G. E. (1989). Evidence against acetylcholine receptor having a main immunogenic region as target for autoantibodies in myasthenia gravis. Neurology, 39, 1069–1076PubMedCrossRefGoogle Scholar
  63. Lennon, V. A. and Lambert, E. H. (1981). Monoclonal autoantibodies to acetylcholine receptors: evidence for a dominant idiotype and requirement of complement for pathogenicity. Ann. NY. Acad. Sci., 377, 77–96PubMedCrossRefGoogle Scholar
  64. Lerner, R. A. and Tramontano, A. (1987). Antibodies as enzymes. TIBS, 12, 427–430Google Scholar
  65. Lindstrom, J. (1986). Probing nicotinic acetylcholine receptors with monoclonal antibodies. Trends Neurosci., 9, 401–407CrossRefGoogle Scholar
  66. Lindstrom, J., Shoepfer, R. and Whiting, P. (1987). Molecular studies of the neuronal nicotinic acetylcholine receptor family. Molec. Neurobiol., 1, 281–337CrossRefGoogle Scholar
  67. Lindstrom, J., Shelton, D. and Fugii, Y. (1988). Myasthenia gravis. Adv. Immunol., 42, 233–284PubMedCrossRefGoogle Scholar
  68. Lindstrom, J., Tzartos, S. J. and Gullick, W. (1981). Structure and function of the acetylcholine receptor molecule studied using monoclonal antibodies. Ann. N. Y. Acad. Sci., 377, 1–19PubMedCrossRefGoogle Scholar
  69. Lindstrom, J. M., Seybold, M. E., Lennon, V. A., Whittingham, S. and Duane, D. (1976). Antibody to acetylcholine receptor in myasthenia gravis: Prevalence, clinical correlates and diagnostic value. Neurology, 26, 1054–1059PubMedCrossRefGoogle Scholar
  70. Lo, M. S., Tsong, T. Y., Contad, M. K., Strittmatter, S. M., Hester, L. D. and Snyder, S. H. (1984). Monoclonal antibody production by receptor-mediated electrically induced cell fusion. Nature, 310, 792–794PubMedCrossRefGoogle Scholar
  71. Luben, R. A. and Mohler, M. A. (1980). In vitro immunization as an adjunct to the production of hybridomas producing antibodies against the lymphokine osteoclast activating factor. Molec. Immunol, 17, 635–639CrossRefGoogle Scholar
  72. McCarthy, M. P., Earnest, J. P., Young, E. F., Choe, S. and Stroud, R. M. (1986). The molecular neurobiology of the aceteylcholine receptor. Ann. Rev. Neurosci., 9, 383–413PubMedCrossRefGoogle Scholar
  73. McCormick, D. J. and Atassi, M. Z. (1984). Localization and synthesis of the acetylcholine-binding site in the α-chain of the Torpedo californica acetylcholine receptor. Biochem. J., 224, 995–1000PubMedPubMedCentralCrossRefGoogle Scholar
  74. Maelicke, A. (1988). Structure and function of the nicotinic acetylcholine receptor. In Handbook of Experimental Pharmacology, Vol. 86 (ed. V. P. Whittaker). Springer-Verlag, Berlin, pp. 267–313Google Scholar
  75. Maelicke, A., Plumer-Wilk, R., Fels, G., Spencer, S. R., Engelhard, M., Veltel, D. and Conti-Tronconi, B. M. (1989). Epitope mapping employing antibodies raised against short synthetic peptides: A study of the nicotinic acetylcholine receptor. Biochemistry, 28, 1396–1405PubMedCrossRefGoogle Scholar
  76. Marx, A., Kirchner, T., Hoppe, F., O’Connor, R., Schalke, B., Tzartos, S. and Muller-Hermelink, H. K. (1989). Proteins with epitopes of the acetylcholine receptor in epithelial cells of thymomas of patients with myasthenia gravis. Am. J. Pathol., 134, 865–877PubMedPubMedCentralGoogle Scholar
  77. Maselli, R. A., Nelson, D. J. and Richman, D. P. (1989). Effects of a monoclonal anti-acetylcholine receptor antibody on the avian end-plate. J. Physiol. (Lond.), 411, 271–283CrossRefGoogle Scholar
  78. Mehraban, F., Kemshead, J. T. and Dolly, J. O. (1984). Properties of monoclonal antibodies to nicotinic acetylcholine receptor from chick muscle. Eur. J. Biochem., 138, 53–61PubMedCrossRefGoogle Scholar
  79. Merlie, J. P. and Lindstrom, J. (1983). Assemply in vivo of mouse muscle acetylcholine receptor: Identification of an α-subunit species that may be an assemply intermediate. Cell, 34, 747–757PubMedCrossRefGoogle Scholar
  80. Merlie, J. P., Sebbane, R., Tzartos, S. J. and Lindstrom, J. (1982). Inhibition of glycosylation with tunicamycin blocks assembly of newly synthesized acetylcholine receptor subunits in muscle cells. J. Biol. Chem., 251, 2694–2701Google Scholar
  81. Merlie, J. P. and Smith, M. M. (1986). Synthesis and assembly of acetylcholine receptor, a multisubunit membrane glycoprotein. J. Membr. Biol., 91, 1–10PubMedCrossRefGoogle Scholar
  82. Mihovilovic, M. and Richman, D. P. (1984). Modification of a-bungarotoxin and cholinergic ligand-binding properties of Torpedo acetylcholine receptor by an anti-acetylcholine receptor monoclonal antibody. J. Biol. Chem., 259, 15051–15059PubMedGoogle Scholar
  83. Milstein, C. (1986). From antibody structure to immunological diversification of immune response. Science, NY., 231, 1261–1268CrossRefGoogle Scholar
  84. Mishina, M. et al. (1984). Expression of functional acetylcholine receptor from cloned cDNAs. Nature, 307, 604–608PubMedCrossRefGoogle Scholar
  85. Mitra, A. K., McCarthy, M. P. and Stroud, R. M. (1989). 3-Dimensional structure of the nicotinic acetylcholine receptor and location of the major associated 43-kd cytoskeletal protein, determined at 22-A by low dose electron microscopy and x-ray diffraction to 12.5-A. J. Cell Biol., 109, 755–774PubMedCrossRefGoogle Scholar
  86. Mochly-Rosen, C. and Fuchs, S. (1981). Monoclonal anti-acetylcholine receptor antibodies directed against the cholinergic binding site. Biochemistry, 20, 5920–5924PubMedCrossRefGoogle Scholar
  87. Momoy, M. Y. and Lennon, V. A. (1982). Purification and biochemical characterization of nicotinic acetylcholine receptors of human muscle. J. Biol. Chem., 257, 12757–12764Google Scholar
  88. Morel, E., Eymard, B., Vernet der Garabedian, B., Pannier, C, Dulac, O. and Bach, J. F. (1988a). Neonatal myasthenia gravis—A new clinical and immunologic appraisal on 30 cases. Neurology, 38, 138–142PubMedCrossRefGoogle Scholar
  89. Morel, E., Vernet der Garabedian, B., Eymard, B., Raimond, F., Bustarret, F.-A. and Bach, J.-F. (1988b). Binding and blocking antibodies to the human acetylcholine receptor: are they selected in various myasthenia gravis forms. Immunol. Res., 1, 212–217CrossRefGoogle Scholar
  90. Nef, P., Oneyser, C. Alliod, C. Couturier, S. and Ballivet, M. (1988). Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors. EMBO Jl, 1, 595–601Google Scholar
  91. Newsom-Davis, J., Harcourt, G., Sommer, N., Beeson, D., Wilcox, N. and Rothbard, J. B. (1989). T-cell reactivity in myasthenia gravis. J. Autoimmun, 2, 101–108PubMedCrossRefGoogle Scholar
  92. Numa, S. (1987). Structure and function of ionic channels. In Membrane Proteins: Structure, Function, Assembly (ed. J. Rydstrom). Chemica Scripta, Vol. 27B, CUP, Cambridge, pp. 5–19Google Scholar
  93. Olsson, L. and Kaplan, H. S. (1980). Human-human hybridomas producing monoclonal antibodies of predefined antigenic specificity. Proc. Natl Acad. Sci. USA, 11, 5429–5431CrossRefGoogle Scholar
  94. Oosterhuis, H. I. G. H. (Ed.) (1984). Myasthenia Gravis. Churchill Livingstone. Edinburgh.Google Scholar
  95. Papadouli, I., Potamianos, S., Hadjidakis, I., Bairaktari, E., Tsikaris, V., Sakarellos, C., Cung, M. T., Marraud, M. and Tzartos, S. J. (1990). Antigenic role of single residues within the main immunogenic region of the nicotinic acetylcholine receptor. Biochem. J., 269, 239–245PubMedPubMedCentralCrossRefGoogle Scholar
  96. Plumer, R., Fels, G. and Maelicke, A. (1984). Antibodies against preselected peptides to map functional sites on the acetylcholine receptor. FEBS Lett., 178, 204–208PubMedCrossRefGoogle Scholar
  97. Raftery, M., Hunkapiller, M., Strader, C. and Hood, L. (1980). Acetylcholine receptor: Complex of homologous subunits. Science, N. Y., 208, 1454–1457CrossRefGoogle Scholar
  98. Ratnam, M., Le Nguyen, D., Rivier, J., Sargent, P. and Lindstrom, J. (1986a). Transmembrane topography of the nicotinic acetylcholine receptor: immunochemical tests contradict theoretical predictions based on hydrophobicity profile. Biochemistry, 25, 2633–2643PubMedCrossRefGoogle Scholar
  99. Ratnam, M., Sargent, P., Sarin, V., Fox, J. L., Le Nguyen, D., Rivier, J., Criado, M. and Lindstrom, J. (1986b). Location of antigenic determinants on primary sequences of the subunits of the nicotinic acetylcholine receptor by peptide mapping. Biochemistry, 25, 2621–2PubMedCrossRefGoogle Scholar
  100. Riechmann, L., Clark, M., Waldmann, H. and Winter, G. (1988). Reshaping human antibodies for therapy. Nature, 332, 323–327PubMedCrossRefGoogle Scholar
  101. Roberts, S., Cheetham, J. C. and Rees, A. R. (1987). Generation of an antibody with enhanced affinity and specificity for its antigen by protein engineering. Nature, 328, 731–734PubMedCrossRefGoogle Scholar
  102. Sargent, P., Hedges, B., Tsavaler, L., Clemmons, L., Tzartos, S. J. and Lindstrom, J. (1984). The structure and transmembrane nature of the acetylcholine receptor in amphibian skeletal muscle as revealed by cross-reacting monoclonal antibodies. J. Cell Biol., 98, 609–618PubMedCrossRefGoogle Scholar
  103. Sargent, P. B., Pike, S. H., Nadel, D. B. and Lindstrom, J. M. (1989). Nicotinic acetylcholine receptor-like molecules in the retina, retinotectal pathway, and optic tectum of the frog. J. Neurosci., 9, 565–573PubMedGoogle Scholar
  104. Schwimmbeck, P. L., Dyrberg, T., Drachman, D. B. and Oldstone, M. B. A. (1989). Molecular mimicry and myasthenia gravis—an autoantigenic site of the acetylcholine receptor alpha-subunit that has biologic activity and reacts immunochemically with herpes simplex virus. J. Clin. Invest., 84, 1174–1180PubMedPubMedCentralCrossRefGoogle Scholar
  105. Shelton, G. D., Cardinet, G. H. III and Lindstrom, J. M. (1988). Canine and human myasthenia gravis autoantibodies recognize similar regions on the acetylcholine receptor. Neurology, 38, 1417–1423PubMedCrossRefGoogle Scholar
  106. Sophianos, D. and Tzartos, S. J. (1989). Fab fragments of monoclonal antibodies protect the human acetylcholine receptor against degradation caused by myasthenic sera. J. Autoimmun., 2, 777–789PubMedCrossRefGoogle Scholar
  107. Souroujon, M. C, Mochly-Rosen, D., Gordon, A. S. and Fuchs, S. (1983). Interaction of monoclonal antibodies to Torpedo acetylcholine receptor with the receptor of skeletal muscle. Muscle Nerve, 6, 303–311PubMedCrossRefGoogle Scholar
  108. Souroujon, M. C., Pachner, A. R. and Fuchs, S. (1986). The treatment of passively transferred experimental myasthenia with anti-idiotypic antibodies. Neurology, 36, 622–625PubMedCrossRefGoogle Scholar
  109. Stefansson, K., Dieperink, M. E., Richman, D. P. and Marton, L. S. (1987). Sharing of epitopes by bacteria and the nicotinic acetylcholine receptor: A possible role in the pathogenesis of myasthenia gravis. Ann. N. Y. Acad. Sci., 505, 451–460PubMedCrossRefGoogle Scholar
  110. Swanson, L., Lindstrom, J., Tzartos, S. J., Schmued, L., O’Leary, D. D. and Cowan, W. M. (1983). Immunohistochemical localization of monoclonal antibodies to the nicotinic acetylcholine receptor in the midbrain of the chick. Proc. Natl Acad. Sci. USA, 80, 4532–4536PubMedPubMedCentralCrossRefGoogle Scholar
  111. Syu, W. J. and Kahan, L. (1989). Epitope characterization by modifications of antigens and by mapping on resin-bound peptides—discriminating epitopes near the C-terminus and N-terminus of Escherichia coli ribosomal protein-S13. J. Immunol. Meth., 118, 153–160CrossRefGoogle Scholar
  112. Tzartos, S. J. (1988). Myasthenia gravis studied by monoclonal antibodies to the acetylcholine receptor. In Vivo, 2, 105–110PubMedGoogle Scholar
  113. Tzartos, S. J., Barkas, T., Cung, M. T., Kordossi, A., Loutrari, E., Marraud, M., Papadouli, I., Sakarellos, C, Sophianos, D. and Tsikaris, V. (1990a). The main immunogenic region of the acetylcholine receptor, structure and role in myasthenia gravis. Autoimmunity (in press)Google Scholar
  114. Tzartos, S. J. and Changeux, J.-P. (1983). High affinity binding of α-bungarotoxin to the purified α-subunit and its 27K proteolytic peptide from Torpedo acetylcholine receptor. Requirement for SDS. EMBO Jl, 2, 381–387Google Scholar
  115. Tzartos, S. J. and Changeux, J.-P. (1984). Lipid-dependent recovery of a-bungarotoxin and monoclonal antibody binding to the purified α-subunit from Torpedo marmorata acetylcholine receptor. J. Biol. Chem., 259, 11512–11519PubMedGoogle Scholar
  116. Tzartos, S., Efthimiadis, A., Morel, E., Eymard, B. and Bach, J. F. (1990b). Neonatal myasthenia gravis: Antigenic specificities of antibodies in sera from mothers and their infants. Clin. Exp. Immunol., 80, 376–380PubMedPubMedCentralCrossRefGoogle Scholar
  117. Tzartos, S. J., Hochschwender, S., Vasquez, P. and Lindstrom, J. (1987). Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor. J. Neuroimmunol., 15, 185–194PubMedCrossRefGoogle Scholar
  118. Tzartos, S. J., Kokla, A., Walgrave, S. and Conti-Tronconi, B. (1988a). Localization of the main immunogenic region of human muscle acetylcholine receptor to residues 67–76 of the α-subunit. Proc. Natl Acad. Sci. USA, 85, 2899–2903PubMedPubMedCentralCrossRefGoogle Scholar
  119. Tzartos, S. J. and Kordossi, A. (1986). Acetylcholine receptor conformation probed by subunit-specific monoclonal antibodies. In Nicotinic Acetylcholine Receptor (ed. A. Maelicke). NATO ASI series, Vol. H3, Springer-Verlag, Heidelberg, pp. 35–47CrossRefGoogle Scholar
  120. Tzartos, S. J., Kordossi, A., Walgrave, S. L., Kokla, A. and Conti-Tronconi, B. M. (1988b). Determination of antibody binding sites on the three-dimensional and primary structure of acetylcholine receptor. Monogr. Allergy, 25, 20–32PubMedGoogle Scholar
  121. Tzartos, S., Langeberg, L., Hochschwender, S. and Lindstrom, J. (1983). Demonstration of a main immunogenic region on acetylcholine receptors from human muscle using monoclonal antibodies to human receptor. FEBS Lett, 158, 116–118PubMedCrossRefGoogle Scholar
  122. Tzartos, S., Langeberg, L., Hochschwender, S., Swanson, L. and Lindstrom, J. (1986a). Characteristics of monoclonal antibodies to denatured Torpedo and to native calf acetylcholine receptors: species, subunit and region specificity. J. Neuroimmunol., 10, 235–253PubMedCrossRefGoogle Scholar
  123. Tzartos, S. J. and Lindstrom, J. L. (1980). Monoclonal antibodies to probe acetylcholine receptor structure: Localization of the main immunogenic region and detection of similarities between subunits. Proc. Natl Acad. Sci. USA, 77, 755–759PubMedPubMedCentralCrossRefGoogle Scholar
  124. Tzartos, S. J., Loutrari, H. V., Tang, F., Kokla, A., Walgrave, S. L., Milius, R. P. and Conti-Tronconi, B. M. (1990c). The main immunogenic region of Torpedo electroplax and human muscle acetylcholine receptor localization and micro-heterogeneity revealed by the use of synthetic peptides. J. Neurochem., 54, 51–61PubMedCrossRefGoogle Scholar
  125. Tzartos, S. J., Morel, E., Efthimiadis, A., Bustarret, A. F., D’Anglejan, J., Drosos, A. and Moutsopoulos, H. M. (1988c). Fine antigenic specificities of antibodies in sera from patients with D-penicillamine-induced myasthenia gravis. Clin. Exp. Immunol., 74, 80–86PubMedPubMedCentralGoogle Scholar
  126. Tzartos, S., Papadouli, I., Potamianos, S., Hadjidakis, I., Bairaktari, H., Tsikaris, V., Sakarellos, C, Cung, M. T. and Marraud, M. (1989). Fine structural characterization of the main immunogenic region of the nicotinic acetylcholine receptor. In Molecular Biology of Neuroreceptors and Ion Channels (ed. A. Maelicke). NATO ASI series, Vol. H32, Springer, Berlin, pp. 361–371CrossRefGoogle Scholar
  127. Tzartos, S. J., Rand, D. E., Einarson, B. E. and Lindstrom, J. M. (1981). Mapping of surface structures of Electrophorus acetylcholine receptor using monoclonal antibodies. J. Biol. Chem., 256, 8635–8645PubMedGoogle Scholar
  128. Tzartos, S. J., Seybold, M. and Lindstrom, J. (1982). Specificities of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies. Proc. Natl Acad. Sci. USA, 79, 188–192PubMedPubMedCentralCrossRefGoogle Scholar
  129. Tzartos, S. J., Sophianos, D. and Efthimiadis, A. (1985). Role of the main immunogenic region of acetylcholine receptor in myasthenia gravis. An Fab monoclonal antibody protects against antigenic modulation by human sera. J. Immunol., 134, 2343–2349PubMedGoogle Scholar
  130. Tzartos, S. J., Sophianos, D., Zimmermann, K. and Starzinski-Powitz, A. (1986b). Antigenic modulation of human muscle acetylcholine receptor by myasthenic sera. Serum titer determines receptor internalization. J. Immunol., 136, 3231–3237PubMedGoogle Scholar
  131. Tzartos, S. J. and Starzinski-Powitz, A. (1986). Decrease in acetylcholine receptor content of human myotube cultures mediated by monoclonal antibodies to α, β and γ subunits. FEBS Lett, 196, 91–95PubMedCrossRefGoogle Scholar
  132. Van Regenmortel, M. H. V. (1989). Structural and functional approaches to the study of protein antigenicity. Immunol. Today, 10, 266–272PubMedCrossRefGoogle Scholar
  133. Verschuuren, J. J. G. M. (1989). Experimental Autoimmune Myasthenia Gravis. Antibodies, Idiotypes and Anti-idiotypes. PhD Thesis, University of Limburg at Maastricht, The NetherlandsGoogle Scholar
  134. Wada, K., Ballivet, M., Boulter, J., Connolly, J., Wada, E., Deneris, E. S., Swanson, L. W., Heinemann, S. and Patrick, J. (1988). Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor. Science, N. Y., 240, 330–334CrossRefGoogle Scholar
  135. Wan, K. and Lindstrom, J. (1985). Effects of monoclonal antibodies on the function of purified acetylcholine receptor from Torpedo californica reconstituted into liposomes. Biochemistry, 24, 1212–1221PubMedCrossRefGoogle Scholar
  136. Ward, E. S., Gussow, D., Griffiths, A. D., Jones, P. T. and Winter, G. (1989). Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature, 341, 544–546PubMedCrossRefGoogle Scholar
  137. Watters, D. and Maelicke, A. (1983). Organization of ligand binding sites at the acetylcholine receptor: A study with monoclonal antibodies. Biochemistry, 22, 1811–1819PubMedCrossRefGoogle Scholar
  138. Whiting, P. and Lindstrom, J. (1986). Purification and characterization of a nicotinic acetylcholine receptor from chick brain. Biochemistry, 25, 2082–2093PubMedCrossRefGoogle Scholar
  139. Whiting, P. J. and Lindstrom, J. M. (1988). Characterization of bovine and human neuronal nicotinic acetylcholine receptors using monoclonal antibodies. J. Neurosci., 8, 3395–3404PubMedGoogle Scholar
  140. Whiting, P. J., Schoepfer, R., Swanson, L. W., Simmons, D. M. and Lindstrom, J. M. (1987). Functional acetylcholine receptor in PC12 cells reacts with a mab to brain nicotinic receptors. Nature, 327, 515–518PubMedCrossRefGoogle Scholar
  141. Whiting, P. J., Vincent, A. and Newsom-Davis, J. (1986). Myasthenia gravis: Monoclonal antihuman acetylcholine receptor antibodies used to analyse antibody specificities and responses to treatment. Neurology, 36, 612–617PubMedCrossRefGoogle Scholar
  142. Wilson, P. T. and Lentz, T. L. (1988). Binding of a-bungarotoxin to synthetic peptides corresponding to residues 173–204 of the a subunit of Torpedo, calf, and human acetylcholine receptor and restoration of high-affinity binding by sodium dodecyl sulfate. Biochemistry, 27, 6667–6674PubMedCrossRefGoogle Scholar
  143. Wood, H., Beeson, D., Vincent, A. and Newsom-Davis, J. (1989). Epitopes on human acetylcholine receptor α-subunit: binding of monoclonal antibodies to recombinant and synthetic peptides. Biochem. Soc. Trans., 17, 220–221CrossRefGoogle Scholar
  144. Xu, Q., DuPont, B. L., Fairclough, R. H. and Richman, D. P. (1988). An anti-acetylcholine receptor monoclonal antibody that blocks agonist binding also modifies antibody binding to the main immunogenic region of the receptor. Neurology, 38, Suppl. 1, 135Google Scholar
  145. Zhang, Y., Barkas, T., Juillerat, M., Schwendimann, B. and Wekerle, H. (1988a). T cell epitopes in EAmyasthenia gravis of the rat: strain-specific epitopes and cross-reaction between two distinct segments of the α chain of the nicotinic acetylcholine receptor (Torpedo californica). Eur. J. Immunol., 18, 551–557PubMedCrossRefGoogle Scholar
  146. Zhang, Y., Tzartos, S. J. and Wekerle, H. (1988b). B-T lymphocyte interactions in experimental autoimmune myasthenia gravis: antigen presentation by rat/mouse hybridoma lines secreting monoclonal antibodies against the nicotinic acetylcholine receptor. Eur. J. Immunol., 18, 211–218PubMedCrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1991

Authors and Affiliations

  • Socrates J. Tzartos
    • 1
  1. 1.Hellenic Pasteur InstituteGreece

Personalised recommendations