Advertisement

Studies on [3H]Glutamate Binding in Nervous Tissues. What are the Pitfalls?

  • Yukio Yoneda
  • Kiyokazu Ogita
Chapter

Abstract

Some free acidic amino acids enriched in the brain, such as L-glutamic acid (Glu) and L-aspartic acid (Asp), are believed to play a role as excitatory amino acid neurotransmitters in the mammalian central nervous system (Curtis and Johnston, 1974; Fonnum, 1984). For instance, Glu is synthesized in presynaptic nerve terminals from which it is released during the neuronal excitation in a Ca2+-dependent fashion. A high-affinity and Na+-dependent uptake system is responsible for the termination of neurotransmission mediated by these acidic amino acids. Recently it has been demonstrated that Glu is released from an exocytotic pool in cerebral cortical synaptosomes on depolarization of the plasma membranes (Nicholls and Sihra, 1986; Sanchez-Prieto et al., 1987). These findings are consistent with the successful isolation of synaptic vesicles with a Na+-independent and ATP-dependent accumulation system for the acidic amino acid, which is distinctly different from the abovementioned Na+-dependent uptake system (Naito and Ueda, 1983, 1985). An immunohistochemical study has revealed the localization of vesicular structures accumulating Glu in nerve terminals (Storm-Mathisen et al., 1983). In addition, human fibroblasts are shown to contain an acidic amino acid exchange system between cystine and Glu across plasma membranes (Bannai, 1986).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bannai, S. (1986). Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J. Biol. Chem., 261, 2256–2263PubMedGoogle Scholar
  2. Bolz, J., Wassle, H. and Thier, P. (1984). Pharmacological modulation of ON and OFF ganglion cells in the cat retina. Neuroscience, 12, 875–885PubMedCrossRefGoogle Scholar
  3. Brandon, C. and Lam, D. M. K. (1983). L-Glutamic acid: a neurotransmitter candidate for cone photoreceptors in human and rat retinas. Proc. Natl Acad. Sci. USA, 80, 5117–5121PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bruns, R. F., Lawson-Wendling, K. and Pugsley, T. A. (1983). A rapid filtration assay for soluble receptors using polyethyleneimine-treated filters. Anal. Biochem., 132, 74–81PubMedCrossRefGoogle Scholar
  5. Cervetto, L. and Piccolino, M. (1974). Synaptic transmission between photoreceptors and horizontal cells in the turtle retina. Science, N. Y., 183, 417–419CrossRefGoogle Scholar
  6. Curtis, D. R. and Johnston, G. A. R. (1974). Amino acid transmitters in the mammalian central nervous system. Ergeb. Physiol., 69, 94–188Google Scholar
  7. Dowling, J. E. and Ripps, H. (1973). Effect of magnesium on horizontal cell activity in the skate retina. Nature, 242, 101–103PubMedCrossRefGoogle Scholar
  8. Errami, M. and Nieoullon, A. (1988). a-[3H]Hydroxy-5-methyl-4-isoxazolepropionic acid binding to rat striatal membranes: Effects of selective brain lesions. J. Neurochem., 51, 579–586PubMedCrossRefGoogle Scholar
  9. Fagg, G. E. and Matus, A. (1984). Selective association of N-methyl aspartate and quisqualate types of L-glutamate receptor with brain postsynaptic densities. Proc. Natl Acad. Sci. USA, 81, 6876–6880PubMedPubMedCentralCrossRefGoogle Scholar
  10. Ferkany, J. M. and Coyle, J. T. (1983). Specific binding of [3H](±)-2-amino-7-phosphonoheptanoic acid to rat brain membranes in vitro. Life Sci., 33, 1295–1305PubMedCrossRefGoogle Scholar
  11. Fonnum, F. (1984). Glutamate: a neurotransmitter in mammalian brain. J. Neurochem., 42, 1–11PubMedCrossRefGoogle Scholar
  12. Foster, A. C. and Fagg, G. E. (1984). Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationships to synaptic receptors. Brain Res. Rev., 7, 103–164CrossRefGoogle Scholar
  13. Foster, A. C. and Fagg, G. E. (1987). Comparison of L-[3H]glutamate, D-[3H]aspartate, DL-[3H]AP5 and [3H]NMDA as ligands for NMDA receptors in crude postsynaptic densities from rat brain. Eur. J. Pharmacol., 133, 291–300PubMedCrossRefGoogle Scholar
  14. Glowinski, J. and Iversen, L. L. (1966). Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]DOPA in various regions of the brain. J. Neurochem., 13, 655–669PubMedCrossRefGoogle Scholar
  15. Hampson, D. R., Huie, D. and Wenthold, R. J. (1987). Solubilization of kainic acid binding sites from rat brain. J. Neurochem., 49, 1209–1215PubMedCrossRefGoogle Scholar
  16. Henley, J. M. and Barnard, E. A. (1989). Kainate receptors in Xenopus central nervous system: Solubilisation with n-octyl-β-D-glucopyranoside. J. Neurochem., 52, 31–37PubMedCrossRefGoogle Scholar
  17. Hockel, S. H. J. and Müller, W. E. (1982). L-Glutamate receptor binding in bovine retina. Exp. Eye Res., 35, 55–60PubMedCrossRefGoogle Scholar
  18. Honore, T., Lauridsen, J. and Krogsgaard-Larsen, P. (1982). The binding of [3H]AMPA, a structural analogue of glutamic acid, to rat brain membranes. J. Neurochem., 38, 173–178PubMedCrossRefGoogle Scholar
  19. Ito, M., Periyasamy, S. and Chiu, T. H. (1986). Displaceable binding of [3H]L-glutamic acid to non-receptor materials. Life Sci., 38, 1089–1096PubMedCrossRefGoogle Scholar
  20. Kessler, M., Baudry, M. and Lynch, G. (1987). Use of cystine to distinguish glutamate binding from glutamate sequestration. Neurosci. Lett., 81, 221–226PubMedCrossRefGoogle Scholar
  21. Lopez-Colome, A. M. (1981). High-affinity binding of L-glutamate to chick retinal membranes. Neurochem. Res., 6, 1019–1033PubMedCrossRefGoogle Scholar
  22. Lopez-Colome, A. M. and Somohano, F. (1984). Localization of L-glutamate and L-aspartate synaptic receptors in chick retinal neurons. Brain Res., 298, 159–162PubMedCrossRefGoogle Scholar
  23. Lopez-Colome, A. M. and Somohano, F. (1987). Characterization of quisqualate-type L-glutamate receptors in the retina. Brain Res., 414, 99–108PubMedCrossRefGoogle Scholar
  24. Mitchell, C. K. and Redburn, D. A. (1982). 2-Amino-4-phosphonobutyric acid and N-methyl-D-aspartate differentiate between 3H-glutamate and 3H-aspartate binding sites in bovine retina.Neurosci. Lett., 28, 241–246PubMedCrossRefGoogle Scholar
  25. Monaghan, D. T., Olverman, H. J., Nguyen, L., Watkins, J. C. and Cotman, C. W. (1988). Two classes of N-methyl-D-aspartate recognition sites: Differential distribution and differential regulation by glycine. Proc. Natl Acad. Sci. USA, 85, 9836–9840PubMedPubMedCentralCrossRefGoogle Scholar
  26. Monahan, J. B. and Michel, J. (1987). Identification and characterization of an N-methyl-D-aspartate-specific L-[3H]glutamate recognition site in synaptic plasma membranes. J. Neurochem., 48, 1699–1708PubMedCrossRefGoogle Scholar
  27. Murphy, D. E., Hutchinson, A. J., Hurt, S. D., Williams, M. and Sills, M. A. (1988). Characterization of the binding of [3H]-CGS 19755: a novel N-methyl-D-aspartate antagonist with nanomolar affinity in rat brain. Br. J. Pharmacol., 95, 932–938PubMedPubMedCentralCrossRefGoogle Scholar
  28. Murphy, D. E., Schneider, J., Boehm, C, Lehmann, J. and Williams, M. (1987). Binding of [3H]3-(2-carboxypiperazin-4-yl)propyl-l-phosphonic acid to rat brain membranes: a selective, high-affinity ligand for N-methyl-D-aspartate receptors. J. Pharmacol. Exp. Ther., 240, 778–784PubMedGoogle Scholar
  29. Naito, S. and Ueda, T. (1983). ATP-dependent uptake of glutamate into protein I-associated synaptic vesicles. J. Biol. Chem., 258, 696–699PubMedGoogle Scholar
  30. Naito, S. and Ueda, T. (1985). Characterization of glutamate uptake into synaptic vesicles. J. Neurochem., 44, 99–109PubMedCrossRefGoogle Scholar
  31. Nicholls, D. G. and Sihra, T. S. (1986). Synaptosomes possess an exocytotic pool of glutamate. Nature, 321, 772–773PubMedCrossRefGoogle Scholar
  32. Ogita, K., Suzuki, T. and Yoneda, Y. (1989). Strychnine-insensitive binding of [3H]glycine to synaptic membranes in rat brain, treated with Triton X-100. Neuropharmacology, 28, 1263–1270PubMedCrossRefGoogle Scholar
  33. Ogita, K. and Yoneda, Y. (1986). Characterization of Na+-dependent binding sites of [3H]glutamate in synaptic membranes from rat brain. Brain Res., 397, 137–144PubMedCrossRefGoogle Scholar
  34. Ogita, K. and Yoneda, Y. (1988). Disclosure by Triton X-100 of NMDA-sensitive [3H]glutamate binding sites in rat brain synaptic membranes. Biochem. Biophys. Res. Commun., 153, 510–517PubMedCrossRefGoogle Scholar
  35. Ogita, K. and Yoneda, Y. (1990). Temperature-independent binding of [3H](±)-3-(2-carboxypiperazin-4-yl) propyl-1-phosphonic acid in brain synaptic membranes treated by Triton X-100. Brain Res., 515, 51–56PubMedCrossRefGoogle Scholar
  36. Olsen, R. W., Szamraj, O. and Houser, C. R. (1987). [3H]AMPA binding to glutamate receptor subpopulations in rat brain. Brain Res., 402, 243–254PubMedCrossRefGoogle Scholar
  37. Olverman, H. J., Jones, A. W. and Watkins, J. C. (1984). L-Glutamate has higher affinity than other amino acids for [3H]-D-AP5 binding sites in rat brain membranes. Nature, 307, 460–462PubMedCrossRefGoogle Scholar
  38. Olverman, H. J., Monaghan, D. T., Cotman, C. W. and Watkins, J. C. (1986). [3H]CPP, a new competitive ligand for NMD A receptors. Eur. J. Pharmacol., 131, 161–162PubMedCrossRefGoogle Scholar
  39. Pin, J.-P., Bockaert, J. and Recasens, M. (1984). The Ca2+/Cl dependent L-[3H]glutamate binding: a new receptor or a particular transport process? FEBS Lett., 175, 31–36PubMedCrossRefGoogle Scholar
  40. Ransom, R. W. and Stec, N. L. (1988). Cooperative modulation of [3H]MK-801 binding to the N-methyl-D-aspartate receptor-ion channel complex by L-glutamate, glycine and polyamines. J. Neurochem., 51, 830–836PubMedCrossRefGoogle Scholar
  41. Robinson, M. B., Blakely, R. D., Couto, R. and Coyle, J. T. (1987). Hydrolysis of the brain dipeptide-N-acetyl-L-aspartyl-L-glutamate. Identification and characterization of a novel N-acetylated α-linked acidic dipeptidase activity from rat brain. J. Biol. Chem., 262, 14498–14506PubMedGoogle Scholar
  42. Robinson, M. B., Blakely, R. D. and Coyle, J. T. (1986). Quisqualate selectively inhibits a brain peptidase which cleaves N-acetyl-aspartyl-glutamate in vitro. Eur. J. Pharmacol., 130, 345–347PubMedCrossRefGoogle Scholar
  43. Robinson, M. B. and Coyle, J. T. (1987). Glutamate and related acidic excitatory neurotransmitters: from basic to clinical application. FASEB Jl, 1, 446–455Google Scholar
  44. Sanchez-Prieto, J., Sihra, T. S. and Nicholls, D. G. (1987). Characterization of the exocytotic release of glutamate from guinea-pig cerebral cortical synaptosomes. J. Neurochem., 49, 58–64PubMedCrossRefGoogle Scholar
  45. Slaughter, M. M. and Miller, R. F. (1983). Bipolar cells in the mudpuppy retina use an excitatory amino acid neurotransmitter. Nature, 303, 537–538PubMedCrossRefGoogle Scholar
  46. Slaughter, M. M. and Miller, R. F. (1985). Identification of a distinct synaptic glutamate receptor on horizontal cells in mudpuppy retina. Nature, 314, 96–97PubMedCrossRefGoogle Scholar
  47. Storm-Mathisen, J., Leknes, A. K., Bore, A. T., Vaaland, J. L., Edminson, P., Haug, F.-M. S. and Ottersen, O. P. (1983). First visualization of glutamate and G AB A in neurones by immunocytochemistry. Nature, 301, 517–519PubMedCrossRefGoogle Scholar
  48. Watkins, J. C. and Evans, R. H. (1981). Excitatory amino acid transmitters. Ann. Rev. Pharmacol. Toxicol., 21, 165–204CrossRefGoogle Scholar
  49. Yoneda, Y. and Ogita, K. (1986a). [3H]Glutamate binding sites in the rat pituitary. Neurosci. Res., 3, 430–435PubMedCrossRefGoogle Scholar
  50. Yoneda, Y. and Ogita, K. (1986b). Localization of [3H]glutamate binding sites in rat adrenal medulla. Brain Res., 383, 387–391PubMedCrossRefGoogle Scholar
  51. Yoneda, Y. and Ogita, K. (1987a). Are Ca2+-dependent proteases really responsible for Cl-dependent and Ca2+-stimulated binding of [3H]glutamate in rat brain? Brain Res., 400, 70–79PubMedCrossRefGoogle Scholar
  52. Yoneda, Y. and Ogita, K. (1987b). Enhancement of [3H]glutamate binding by N-methyl-D-aspartic acid in rat adrenal. Brain Res., 406, 24–31PubMedCrossRefGoogle Scholar
  53. Yoneda, Y. and Ogita, K. (1987c). Solubilization of novel binding sites for [3H]glutamate in rat adrenal. Biochem. Biophys. Res. Commun., 142, 609–616PubMedCrossRefGoogle Scholar
  54. Yoneda, Y. and Ogita, K. (1989a). Microbial methodological artifacts in [3H]glutamate receptor binding assays. Anal. Biochem., 177, 250–255PubMedCrossRefGoogle Scholar
  55. Yoneda, Y. and Ogita, K. (1989b). Solubilization of quisqualate-sensitive [3H]glutamate binding activity from rat retina. J. Neurochem., 52, 1501–1507PubMedCrossRefGoogle Scholar
  56. Yoneda, Y. and Ogita, K. (1989c). Solubilization of stereospecific and quisqualate-sensitive activity of [3H]glutamate binding in the pituitary of the rat. Neuropharmacology, 28, 611–616PubMedCrossRefGoogle Scholar
  57. Yoneda, Y. and Ogita, K. (1989d). Characterization of quisqualate-sensitive [3H]glutamate binding activity solubilized from rat adrenal. Neurochem. Int., 15, 137–143PubMedCrossRefGoogle Scholar
  58. Yoneda, Y. and Ogita, K. (1990). Neurochemical aspects of the N-methyl-D-aspartate receptor complex. Neurosci. Res., 8, in pressGoogle Scholar
  59. Yoneda, Y., Ogita, K., Nakamuta, H., Fukuda, Y., Koida, M. and Ogawa, Y. (1987). Comparative study of [3H]glutamate binding sites in rat retina and cerebral cortex. Biochem. Pharmacol., 36, 772–774PubMedCrossRefGoogle Scholar
  60. Yoneda, Y., Ogita, K., Ohgaki, T., Uchida, S. and Meguri, H. (1989). N-Methyl-D-aspartate-sensitive [3H]glutamate binding sites in brain synaptic membranes treated with Triton X-100. Biochem. Biophys. Acta, 1012, 74–80PubMedCrossRefGoogle Scholar
  61. Yoneda, Y., Ogita, K. and Suzuki, T. (1988). Multiple binding sites on the NMDA receptor/ion channel complex in brain synaptic membranes. In Neurotransmitters: Focus on Excitatory Amino Acids (ed. I. Kanazawa). Excerpta Medica, Tokyo, pp. 47–65Google Scholar
  62. Yoneda, Y., Ogita, K. and Suzuki, T. (1990). Interaction of strychnine-insensitive glycine binding with MK-801 binding in brain synaptic membranes. J. Neurochem., 55, 237–244PubMedCrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1991

Authors and Affiliations

  • Yukio Yoneda
    • 1
  • Kiyokazu Ogita
    • 1
  1. 1.Department of Pharmacology, Faculty of Pharmaceutical SciencesSetsunan UniversityHirakata, OsakaJapan

Personalised recommendations