Neuropeptide Gene Families that Control Reproductive Behaviour and Growth in Molluscs

  • W. P. M. Geraerts
  • A. B. Smit
  • K. W. Li
  • E. Vreugdenhil
  • H. van Heerikhuizen


Peptidergic neuroendocrine cells play an important role in the control of complex and interrelated life processes, such as growth, reproduction and behaviour. These neurons function as transducer cells; they integrate (neural) signals carrying information on the internal and external environment and convert these signals into peptide messages, which, in a co-ordinated fashion, activate the appropriate target systems of the body to produce a specific response. For a complete understanding of the basic mechanisms underlying the functioning of peptidergic cells, information on many aspects of the cell is needed. To study these different processes (input, integrative capacities, branching patterns, ultrastructural characteristics, biosynthesis and release activities, etc.), a multidisciplinary approach is needed. Unfortunately, the peptidergic systems of most animal groups are not optimally suited for this approach. The identification of the cells in vivo is often impossible; the cells are often too small for specific techniques, such as the intracellular recording of membrane potentials; and furthermore, the physiological and behavioural systems of many animals, especially vertebrates, are very complicated, which seriously hampers studies on the role of peptidergic neurons in the control of physiological processes and behaviour.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpert, S., Hanahan, D. and Tertelman, G. (1988). Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell, 53, 295–308PubMedCrossRefGoogle Scholar
  2. Benjamin, P. R., Swindale, N. V. and Slade, C. T. (1976). Electrophysiology of identified neurosecretory neurons in the pond snail Lymnaea stagnate (L.). In Neurobiology of Invertebrates. Gastropoda Brain (ed. J. Salanki). Akademiai Kiado, Budapest, pp. 85–100Google Scholar
  3. Blundell, T. L. and Humbel, R. E. (1980). Hormone families: pancreatic hormones and homologous growth factors. Nature, 287, 781–787PubMedCrossRefGoogle Scholar
  4. Blundell, T. L. and Wood, S. P. (1975). Is the evolution of insulin Darwinian or due to selectively neutral mutation? Nature, 257, 197–203PubMedCrossRefGoogle Scholar
  5. Boer, H. H., Groot, C., de Jong-Brink, M. and Cornelisse, C. J. (1977). Polyploidy in the freshwater snail Lymnaea stagnalis (Gastropoda, Pulmonata). A cytophotometric analysis of the DNA in neurons and some other cell types. Neth. J. Zool., 27, 245–252CrossRefGoogle Scholar
  6. Brownell, P. H. (1983). Neuroendocrine mechanisms of visceromotor behavior in Aplysia. In Molluscan Neuro-Endocrinology (ed. J. Lever and H. H. Boer). North-Holland, Amsterdam, pp. 78–81Google Scholar
  7. Brussaard, A. B., Ebberink, R. H. M., Schluter, N. C. M., Kits, K. S. and Ter Maat, A. (1990). Discharge induction in molluscan peptidergic cells requires a specific set of four autoexcitatory neuropeptides. Neuroscience (in press)Google Scholar
  8. Brussaard, A. B., Kits, K. S., Ter Maat, A., van Minnen, J. and Moed, P. J. (1988). Dual inhibitory action of FMRFamide on peptidergic neurons controlling egg laying behavior in the pond snail. Brain Res., 447, 35–51PubMedCrossRefGoogle Scholar
  9. Buma, P., Roubos, E. W. and Pieters, F. A. L. (1983). Significance of calcium and cAMP for the control of neurohormone release by the neuroendocrine caudo-dorsal cells of the freshwater snail Lymnaea stagnate. In Molluscan Neuro-Endocrinology (ed. J. Lever and H. H. Boer). North-Holland, Amsterdam, pp. 74–77Google Scholar
  10. Chiu, A. Y., Hunkapiller, M. W., Heller, E., Stuart, D. K., Hood, L. E. and Strumwasser, F. (1979). Purification and primary structure of the neuropeptide egg-laying hormone of Aplysia californica. Proc. Natl Acad. Sci. USA, 76, 6656–6660PubMedPubMedCentralCrossRefGoogle Scholar
  11. Coggeshall, R. E. (1967). A light and electron microscope study of the abdominal ganglion of Aplysia californica. J. Neurophysiol., 30, 1263–1287PubMedGoogle Scholar
  12. Coggeshall, R. E., Yakstra, B. A. and Schwartz, F. J. (1970). A cytophotomeric analysis of DNA in the nucleus of the giant cell, R-2, in Aplysia. Chromosoma, 32, 205–212PubMedGoogle Scholar
  13. Daughaday, W. H. and Rotwein, P. (1989). Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr. Rev., 10, 68–91PubMedCrossRefGoogle Scholar
  14. Dictus, W. J. A. G., de Jong-Brink, M. de and Boer, H. H. (1987). A neuropeptide (calfluxin) is involved in the influx of calcium into mitochondria of the albumen gland of the freshwater snail Lymnaea stagnate. Gen. Comp. Endocrinol., 65, 439–450PubMedCrossRefGoogle Scholar
  15. Ebberink, R. H. M., van Loenhout, H., Geraerts, W. P. M. and Joosse, J. (1985). Purification and amino acid sequence of the ovulation hormone of Lymnaea stagnate. Proc. Natl Acad. Sci. USA, 82, 7767–7771PubMedPubMedCentralCrossRefGoogle Scholar
  16. Fisher, J. M., Sossin, W., Newcomb, R. and Serieller, R. H. (1988). Multiple neuropeptides derived from a common precursor are differentially packaged and transported. Cell, 54, 813–822PubMedCrossRefGoogle Scholar
  17. Froesch, E. R., Schmidt, C., Schwander, J. and Zapf, J. A. (1985). Actions of insulin-like growth factors. Ann. Rev. Physiol., 47, 443–467CrossRefGoogle Scholar
  18. Geraerts, W. P. M. (1976a). Control of growth by the neurosecretory hormone of the light green cells in the freshwater snail Lymnaea stagnate. Gen. Comp. Endocrinol., 29, 61–67PubMedCrossRefGoogle Scholar
  19. Geraerts, W. P. M. (1976b). The role of the lateral lobes in the control of growth and reproduction in the hermaphrodite freshwater snail Lymnaea stagnate. Gen. Comp. Endocrinol., 29, 97–108PubMedCrossRefGoogle Scholar
  20. Geraerts, W. P. M. and Bohlken, S. (1976). The control of ovulation in the hermaphrodite freshwater snail Lymnaea stagnate by the neurohormone of the caudodorsal cells. Gen. Comp. Endocrinol., 28, 350–357PubMedCrossRefGoogle Scholar
  21. Geraerts, W. P. M. and Hogenes, Th. M. (1985). Heterogeneity of peptides released by electrically active neuroendocrine caudodorsal cells of Lymnaea stagnate. Brain Res., 331, 51–61PubMedCrossRefGoogle Scholar
  22. Geraerts, W. P. M., Ter Maat, A. and Hogenes, Th. M. (1984). Studies on release activities of the neurosecretory caudo-dorsal cells of Lymnaea stagnate. In Biosynthesis, Metabolism and Mode of Action of Invertebrate Hormones (ed. J. Hoffmann and M. Porchet). Springer-Verlag, Berlin, pp. 44–50CrossRefGoogle Scholar
  23. Geraerts, W. P. M., Ter Maat, A. and Vreugdenhil, E. (1988a). The peptidergic neuroendocrine control of egg-laying behavior in Aplysia and Lymnaea. In Endocrinology of Selected Invertebrate Types (ed. H. Laufer and G. H. Downer). Alan R. Liss, New York, pp. 141–231Google Scholar
  24. Geraerts, W. P. M., Vreugdenhil, E. and Ebberink, R. H. M. (1988b). Bioactive peptides in molluscs. In Invertebrate Peptide Hormones (ed. M. C. Thorndyke and G. Goldsworthy). Cambridge University Press, Cambridge, pp. 377–468Google Scholar
  25. Girbau, M., Gomez, J. A., Lesniak, M. A. and de Pablo, F. (1987). Insulin and insulin-like growth factor I both stimulate metabolism, growth and differentiation in the postneurula chick embryo. Endocrinology, 121, 1477–1482PubMedCrossRefGoogle Scholar
  26. Jansen, R. F. and Bos, N. P. A. (1984). An identified neuron modulating the activity of the ovulation hormone producing caudo-dorsal cells of the pond snail Lymnaea stagnate. J. Neurobiol., 15, 161–167PubMedCrossRefGoogle Scholar
  27. Jansen, R. F. and Ter Maat, A. (1985). Ring neuron control of columellar motor neurons during egg-laying behaviour in the pond snail. J. Neurobioi., 16, 1–14CrossRefGoogle Scholar
  28. Joosse, J. (1964). Dorsal bodies and dorsal neurosecretory cells of the cerebral ganglia of Lymnaea stagnate L. Arch. Neerl. Zool., 15, 1–103CrossRefGoogle Scholar
  29. Joosse, J. (1988). The hormones of molluscs. In Endocrinology of Selected Invertebrate Types (ed. H. Laufer and G. H. Downer). Alan R. Liss, New York, pp. 89–140Google Scholar
  30. Kaczmarek, L. K., Finbow, M., Revel, J.-P. and Strumwasser, F. (1979). The morphology and coupling of Aplysia bag cells within the abdominal ganglion and in cell culture. J. Neurobioi., 10, 535–550CrossRefGoogle Scholar
  31. Kawakami, A., Iwami, M., Nagasawa, H., Suzuki, A. and Ishizaki, H. (1989). Structure and organization of four clustered genes that encode bombyxin, an insulin-related brain secretory peptide of the silkmoth Bombyx mori. Proc. Natl Acad. Sci. USA, 84, 6843–6847CrossRefGoogle Scholar
  32. Kandel, E. R. (1979). Behavioral Biology of Aplysia. W. H. Freeman, San FranciscoGoogle Scholar
  33. Kauer, J. A., Fisher, T. E. and Kaczmarek, L. K. (1987). Alpha bag cell peptide directly modulates the excitability of the neurons that release it. J. Neurosci., 7, 3623–3632PubMedGoogle Scholar
  34. Kits, K. S. (1980). States of excitability in ovulation hormone producing neuroendocrine cells of Lymnaea stagnalis (Gastropoda) and their relation to the egg-laying cycle. J. Neurobiol, 11, 397–410PubMedCrossRefGoogle Scholar
  35. Kits, K. S. and Lodder, J. C. (1988). cAMP increases excitability in growth hormone producing neurones by enhancement of Ca-current. In Neurobiology of Invertebrates; Transmitters, Modulators and Receptors. Symp.Biol. Hung., 36, 655–667Google Scholar
  36. Kupfermann, I. (1967). Stimulation of egg laying: possible neuroendocrine functions of bag cells of abdominal ganglion of Aplysia. J. Neurophysiol., 33, 877–881Google Scholar
  37. Mahon, A. C., Nambu, J. R., Taussig, R., Shyamala, M., Roach, A. and Scheller, R. H. (1985). Structure and expression of the egg-laying hormone gene family in Aplysia. J. Neurosci., 5, 1872–1880PubMedGoogle Scholar
  38. Mayeri, E., Brownell, P. H. and Branton, W. D. (1979a). Multiple, prolonged actions of neuroendocrine bag cells on neurons in Aplysia. II. Effects on beating pacemaker and silent neurons. J. Neurophysiol., 42, 1184–1197Google Scholar
  39. Mayeri, E., Brownell, P. H., Branton, W. D. and Simon, S. B. (1979b). Multiple, prolonged actions of neuroendocrine bag cells on neurons in Aplysia. I. Effects on bursting pacemaker neurons. J. Neurophysiol., 42, 1165–1184PubMedGoogle Scholar
  40. van Minnen, J., Dirks, R. W., Vreugdenhil, E. and van Diepen, J. (1989). Expression of the egg-laying hormone genes in peripheral neurons and exocrine cells in the reproductive tract of the mollusc Lymnaea stagnalis. Neuroscience, 33, 35–46PubMedCrossRefGoogle Scholar
  41. van Minnen, J., van der Haar, Ch., Raap, A. K. and Vreugdenhil, E. (1988). Localization of ovulation hormone-like neuropeptide in the central nervous system of the snail Lymnaea stagnalis by means of immunocytochemistry and in situ hybridization. Cell Tiss. Res., 251, 477–484CrossRefGoogle Scholar
  42. van Minnen, J., Reichelt, D. and Lodder, J. C. (1980). An ultrastructural study of the neurosecretory Canopy Cell of the pond snail Lymnaea stagnalis (L.), with the use of the horseradish peroxidase tracer technique. Cell Tiss. Res., 214, 453–462Google Scholar
  43. Nagle, G. T., Painter, S. D. and Blankenship, J. E. (1989). Post-translational processing in model neuroendocrine systems: precursors and products that coordinate reproductive activity in Aplysia and Lymnaea. J. Neurosci. Res., 23, 359–370PubMedCrossRefGoogle Scholar
  44. Nagle, G. T., Painter, S. D., Blankenship, J. E. and Kurosky, A. (1988). Proteolytic processing of egg-laying hormone-related precursors in Aplysia. Identification of peptide regions critical for biological activity. J. Biol. Chem., 263, 9223–9237PubMedGoogle Scholar
  45. Nahon, J. L., Presse, F., Bittencourt, J. C., Sawchenko, P. E. and Vale, W. (1989). The rat melanin-concentrating hormone messenger ribonucleic acid encodes multiple putative neuropeptides coexpressed in the dorsolateral hypothalamus. Endocrinology, 125, 2056–2065PubMedCrossRefGoogle Scholar
  46. Nambu, J. R. and Scheller, R. H. (1986). Egg-laying hormone genes of Aplysia: evolution of the ELH gene family. Neuroscience, 6, 2026–2036PubMedGoogle Scholar
  47. Newcomb, R., Fisher, J. M. and Scheller, R. H. (1988). Processing of the egg-laying hormone precursor in the bag cell neurons of Aplysia. J. Biol. Chem., 263, 12514–12521PubMedGoogle Scholar
  48. Newcomb, R. and Scheller, R. H. (1987). Proteolytic processing of the Aplysia egg-laying hormone and R3-14 neuropeptide precursors. J. Neurosci, 7, 854–863PubMedGoogle Scholar
  49. Petersen, O. H., Findlay, I., Suzuki, K. and Dunne, M. J. (1986). Messenger-mediated control of potassium channels in secretory cells. J. Exp. Biol., 124, 33–52PubMedGoogle Scholar
  50. Robitzki, A., Schroder, H. C., Ugarkovic, D., Pfeifer, K., Uhlenbruck, G. and Muller W. E. G. (1989). Demonstration of an endocrine circuit for insulin in the sponge Geodia cydonium. EMBO Jl, 8, 2905–2909Google Scholar
  51. Rothman, B. S., Mayeri, E., Brown, R. O., Yuan, P.-M. and Shively, J. E. (1983). Primary structure and neuronal effects of α-bag cell peptide, a second candidate neurotransmitter encoded by a single gene in bag cell neurons of Aplysia. Proc. Natl Acad. Sci. USA., 80, 5753–5757PubMedPubMedCentralCrossRefGoogle Scholar
  52. Roubos, E. W. (1984). Cytobiology of the ovulation neurohormone producing caudo-dorsal cells of the snail Lymnaea stagnalis. Int. Rev. Cytol., 89, 295–346PubMedCrossRefGoogle Scholar
  53. Roubos, E. W., van Leeuwen, J. P. T. M. and Maijers, A. (1985). Ultrastructure of gap junctions in the central nervous system of Lymnaea stagnalis, with particular reference to electrotonic coupling between the neuroendocrine caudo-dorsal cells. Neuroscience, 14, 711–722PubMedCrossRefGoogle Scholar
  54. Scheller, R. H., Jackson, J. F., McAllister, L. B., Schwartz, J. H., Kandel, E. R. and Axel, R. (1982). A family of genes that codes for ELH, a neuropeptide eliciting a stereotyped pattern of behavior in Aplysia. Cell., 28, 707–719PubMedCrossRefGoogle Scholar
  55. Schmidt, E. D. and Roubos, E. W. (1987). Morphological basis for nonsynaptic communication within the central nervous system by exocytotic release of secretory material from the egg-laying stimulating neuroendocrine caudo-dorsal cells of Lymnaea stagnalis. Neuroscience, 20, 247–257PubMedCrossRefGoogle Scholar
  56. Smit, A. B., Vreugdenhil, E., Ebberink, R. H. M., Geraerts, W. P. M., Klootwijk, J. and Joosse, J. (1988). Growth-controlling molluscan neurons produce the precursor of an insulin-related peptide. Nature, 331, 535–538PubMedCrossRefGoogle Scholar
  57. Steiner, D. F. and Chan, S. J. (1988). Perspective: An overview of insulin evolution. Horm. Metab. Res., 20, 443–444PubMedCrossRefGoogle Scholar
  58. Steiner, D. F., Chan, S. J., Welsh, J. M. and Kwok, S. C. M. (1985). Structure and evolution of the insulin gene. Ann. Rev. Genet., 19, 463–468PubMedCrossRefGoogle Scholar
  59. Stuart, D., Chiu, A. and Strumwasser, F. (1980). Neurosecretion of egg-laying hormone and other peptides from electrically active bag cell neurons of Aplysia. J. Neurophysiol., 43, 488–490PubMedGoogle Scholar
  60. Shyamala, M., Nambu, J. R. and Serieller, R. H. (1986). Expression of the egg-laying hormone gene family in the head ganglia of Aplysia. Brain Res., 371, 49–57PubMedCrossRefGoogle Scholar
  61. Ter Maat, A., Dijcks, F. A. and Bos, N. P. A. (1986). In vivo recordings of neuroendocrine cells (caudo-dorsal cells) in the pond snail. J. Comp. Physiol., 158A, 853–859CrossRefGoogle Scholar
  62. Ter Maat, A., Geraerts, W. P. M., Jansen, R. F. and Bos, N. P. A. (1987). Chemically mediated positive feedback generates long-lasting afterdischarge in a molluscan neuroendocrine system. Brain Res., 438, 77–82CrossRefGoogle Scholar
  63. Ter Maat, A., Lodder, J. C. and Wilbrink, M. (1983a). Induction of egg laying in the pond snail Lymnaea stagnalis by environmental stimulation of the release of ovulation hormone from the caudo-dorsal cells. Int. J. Invert. Reprod., 6, 239–247CrossRefGoogle Scholar
  64. Ter Maat, A., Roubos, E. W., Lodder, J. C. and Buma, P. (1983b). Integration of biphasic synaptic input by electrotonically coupled neuroendocrine caudo-dorsal cells in the pond snail. J. Neurophysiol., 49, 1392–1409PubMedGoogle Scholar
  65. de Vlieger, T. A., Kits, K. S., Ter Maat, A. and Lodder, J. C. (1980). Morphology and electrophysiology of the ovulation hormone producing neuro-endocrine cells of the freshwater snail Lymnaea stagnalis (L.). J. Expl. Biol., 84, 259–271Google Scholar
  66. de Vlieger, T. A., Lodder, J. C., Werkman, T. R. and Stoof, J. C. (1987). Change in excitability in growth hormone producing cells of Lymnaea stagnalis induced by dopamine receptor stimulation. In Neurobiology: Molluscan Models (ed. H. H. Boer, W. P. M. Geraerts and J. Joosse). North-Holland, Amsterdam, pp. 172–178Google Scholar
  67. Vreugdenhil, E., Jackson, J. F., Bouwmeester, T., Smit, A. B., van Minnen, J., van Heerikhuizen, H., Klootwijk, J. and Joosse, J. (1988). Isolation, characterization, and evolutionary aspects of a cDNA clone encoding multiple neuropeptides involved in the stereotyped egg-laying behavior of the freshwater snail Lymnaea stagnalis. J. Neurosci., 8, 4184–4191PubMedGoogle Scholar
  68. Wendelaar Bonga, S. E. (1970). Ultrastructure and histochemistry of neurosecretory cells and neurohaemal areas in the pond snail Lymnaea stagnalis (L.). Z. Zeilforsch., 108, 190–224CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1991

Authors and Affiliations

  • W. P. M. Geraerts
    • 1
  • A. B. Smit
    • 1
  • K. W. Li
    • 1
  • E. Vreugdenhil
    • 2
  • H. van Heerikhuizen
    • 2
  1. 1.Biological LaboratoryVrije UniversiteitAmsterdamThe Netherlands
  2. 2.Biochemical LaboratoryVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations