Myocardial Injury and Repair

  • Jutta Schaper
  • S. Hein
  • C. M. Heinrichs
  • D. Weihrauch


Reperfusion of the ischaemic myocardium has evolved as the most efficient treatment in patients with impending infarction. The methods of choice are either angioplasty or thrombolysis. The success of the procedure depends on the duration and degree of ischaemia—i.e. whether ischaemic injury is still reversible or not. The susceptibility of human hearts to ischaemic injury varies, depending on the interplay of the five variables known to influence the size of an infarct and the speed of its development (Müller et al., 1982; Schaper, 1984). Thus, in one patient reperfusion after ischaemia may result in recovery of the ischaemic tissue, whereas in another reperfusion may produce haemorrhagic necrosis. Animal models of this clinical situation provide insights into the precise mechanisms active in either recovery or the development of necrosis and allow for the investigation of detailed aspects such as the role of blood cells in reperfused ischaemic myocardium. In this study we describe the morphological changes typical of ischaemic and ischaemic-reperfused myocardium, with particular emphasis on the role of blood cells and its possible regulation by adhesion molecules and integrins.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albelda, S. and Buck, C. (1990). Integrins and other cell adhesion molecules. FASEB J., 4, 2868–2880PubMedGoogle Scholar
  2. Albelda, S., Oliver, P., Romer, L. and Buck, C. (1990). EndoCAM: a novel endothelial cell-cell adhesion molecule. J. Cell Biol., 110, 1227–1237PubMedCrossRefGoogle Scholar
  3. Ambrosio, G., Weisfeldt, M., Jacobus, W. and Flaherty, J. (1987). Evidence for a reversible oxygen radical-mediated component of reperfusion injury: reduction by recombinant superoxide dismutase administered at the time of reflow. Circulation, 75, 282–291PubMedCrossRefGoogle Scholar
  4. Bevilacqua, M., Stengelin, S., Gimbrone, M., Jr., and Seed, B. (1989). Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science, 243, 1160–1165PubMedCrossRefGoogle Scholar
  5. Boyd, A., Wawryk, S., Burns, G. and Fecondo, J. (1988). Intercellular adhesion molecule 1 (ICAM-1) has a central role in cell-cell contact-mediated immune mechanisms. Proc. NatlAcad. Sci. USA, 85, 3095–3099CrossRefGoogle Scholar
  6. Dustin, M. and Springer, T. (1988). Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells. J. Cell Biol., 107, 321–331PubMedCrossRefGoogle Scholar
  7. Engler, R., Schmid-Schoenbein, G. and Pavelec, R. (1983). Leucocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am. J. Pathol., 111, 98–111PubMedPubMedCentralGoogle Scholar
  8. Entman, M., Youker, K., Shappell, S., Siegel, C., Rothlein, R., Dreyer, W., Schmalstieg, C. and Smith, C. (1990). Neutrophil adherence to isolated adult canine myocytes. Evidence for a CD18-dependent mechanism. J. Clin. Invest., 85, 1497–1506PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ganote, C. and Heide, R. (1987). Cytoskeletal lesions in anoxic myocardial injury. Am. J. Pathol., 129, 327–344PubMedPubMedCentralGoogle Scholar
  10. Grant, L. (1973). The sticking and emigration of white blood cells in inflammation. In Zweifach, B. M., Grant, L., McCluskey, R. T. (eds), The Inflammatory Process. Academic Press, New York/London, pp. 205–249Google Scholar
  11. Hein, S., Bleese, N. and Schaper, J. (1990). Veranderungen von Zytoskelett and kontraktilen Proteinen bei Ischamie [Abstract]. Z. Kardiol., 79, 462Google Scholar
  12. Hess, M. and Manson, N. (1984). Molecular oxygen: Friend and foe. The role of the oxygen free radical system in the calcium paradox, the oxygen paradox and ischemia/reperfusion injury. J. Mot. Cell. Cardiol., 16, 969–985CrossRefGoogle Scholar
  13. Iwai, K., Hori, M., Kitabatake, A., Kurihara, H., Uchida, K., Inoue, M. and Kamada, T. (1990). Disruption of microtubules as an early sign of irreversible ischemic injury. Immunohistochemical study of in situ canine hearts. Circ. Res., 67, 694–706PubMedCrossRefGoogle Scholar
  14. Jennings, R., Baum, J. and Herdson, P. (1965). Fine structural changes in myocardial ischemic injury. Arch. Pathol., 79, 135PubMedGoogle Scholar
  15. Jennings, R. and Ganote, C. (1974). Structural changes in myocardium during acute ischemia. Circ. Res., 34/35 (Suppl. III), III-156-III-172Google Scholar
  16. Jolly, S., Kane, W., Bailie, M., Abrams, G. and Lucchesi, B. (1984). Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circ. Res., 54, 277–285PubMedCrossRefGoogle Scholar
  17. Klein, H., Puschmann, S., Schaper, J. and Schaper, W. (1981). The mechanism of the tetrazolium reaction in identifying experimental myocardial infarction. Virchows Arch. (Pathol. Anat.), 393, 287–297CrossRefGoogle Scholar
  18. Leung, D., Geha, R., Newburger, J., Burns, J., Fiers, W., Lapierre, L. and Pober, J. (1986). Two monokines, interleukin I and tumor necrosis factor, render cultured vascular endothelial cells susceptible to lysis by antibodies circulating during Kawasaki syndrome. J. Exp. Med., 164, 1958–1972PubMedCrossRefGoogle Scholar
  19. Mayrovitz, H., Wiedeman, M. and Tuma, R. (1977). Factors influencing leukocyte adherence in microvessels. Thromb. Haemostas, 38, 823Google Scholar
  20. Muller, K., Sass, S., Gottwik, M. and Schaper, W. (1982). Effect of myocardial oxygen consumption on infarct size in experimental coronary artery occlusion. Basic Res. Cardiol., 77, 170–181PubMedCrossRefGoogle Scholar
  21. Osborn, L. (1990). Leukocyte adhesion to endothelium in inflammation. Cell, 62, 3–6PubMedCrossRefGoogle Scholar
  22. Osborn, L., Hession, C., Tizard, R., Vassallo, C., Luhowskyj, S., Chi-Rosso, G. and Lobb, R. (1989). Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell, 59, 1203–1211PubMedCrossRefGoogle Scholar
  23. Pober, J. (1988). Cytokine-mediated activation of vascular endothelium. Physiology and pathology. Am. J. Pathol., 133, 426–433PubMedPubMedCentralGoogle Scholar
  24. Reimer, K., Hill, M. and Jennings, R. (1981). Prolonged depletion of ATP and of the adenine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs. J. Mol. Cell. Cardiol., 13, 229–239PubMedCrossRefGoogle Scholar
  25. Rossen, R., Michael, L., Kagiyama, A., Savage, H., Hanson, G., Reisberg, M., Moake, J., Kim, S., Self, D., Weakley, S., Giannini, E. and Entman, M. (1988). Mechanism of complement activation after coronary artery occlusion: evidence that myocardial ischemia in dogs causes release of constituents of myocardial subcellular origin that complex with human Clq in vivo. Circ. Res., 62, 572–584PubMedCrossRefGoogle Scholar
  26. Schaper, J. (1979). Ultrastructure of the myocardium in acute ischemia. In Schaper, W. (ed.), The Pathophysiology of Myocardial Perfusion. Elsevier/North-Holland, Amsterdam/New York/Oxford, pp. 581–674Google Scholar
  27. Schaper, J. (1986). Ultrastructural changes of the myocardium in regional ischemia and infarction. Ear. Heart J., 7, 3–9CrossRefGoogle Scholar
  28. Schaper, J., Alpers, P., Gottwik, M. and Schaper, W. (1985). Ultrastructural characteristics of regional ischaemia and infarction in the canine heart. Eur. Heart J., 6 (Suppl. E), 21–31CrossRefGoogle Scholar
  29. Schaper, J., Mulch, J., Winkler, B. and Schaper, W. (1979). Ultrastructural, functional, and biochemical criteria for estimation of reversibility of ischemic injury: A study on the effects of global ischemia on the isolated dog heart. J. Mol. Cell. Cardiol., 11, 521–541PubMedCrossRefGoogle Scholar
  30. Schaper, J. and Schaper, W. (1983). Reperfusion of ischemic myocardium: ultrastructural and histochemical aspects. J. Am. Coll. Cardiol., 1, 1037–1046CrossRefGoogle Scholar
  31. Schaper, W. (1971), The Collateral Circulation of the Heart. North-Holland/American Elsevier, Amsterdam/London/New YorkGoogle Scholar
  32. Schaper, W. (1984). Experimental infarcts and the microcirculation. In Hearse, D. and Yellon, D. (Eds), Therapeutic Approaches to Myocardial Infarct Size Limitation. Raven Press, New York, pp. 79–90Google Scholar
  33. Schaper, W., Frenzel, H. and Hort, W. (1979). Experimental coronary artery occlusion. I. Measurement of infarct size. Basic Res. Cardiol., 74, 46–53PubMedCrossRefGoogle Scholar
  34. Simpson, P., Todd, R., Fantone, J., Mickelson, J., Griffin, J. and Lucchesi, B. (1988). Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-Mol, anti-CD11b) that inhibits leukocyte adhesion. J. Clin. Invest., 81, 624–629PubMedPubMedCentralCrossRefGoogle Scholar
  35. Spector, W. and Willoughby, D. (1968). The Pharmacology of Inflammation. English University Press, LondonGoogle Scholar
  36. Steenbergen, C., Hill, M. and Jennings, R. (1987). Cytoskeletal damage during myocardial ischemia: changes in vinculin immunofluorescence staining during total in vitro ischemia in canine heart. Circ. Res., 60, 478–486PubMedCrossRefGoogle Scholar
  37. Stenberg, P., McEver, R., Shuman, M., Jacques, Y. and Bainton, D. (1985). A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J. Cell Biol., 101, 880–886PubMedCrossRefGoogle Scholar
  38. Todd, R., Simpson, P. and Lucchesi, B. (1989). Anti-inflammatory properties of monoclonal anti-Mol (CD11b/CD18) antibodies in vitro and in vivo. In Springer, T., Anderson, D., Rosenthal, A. and Rothlein, R. (Eds), Structure and Function of Molecules Involved in Leukocyte Adhesion. Springer, New York, pp. 125–137Google Scholar
  39. Willoughby, D. (1973). Mediation of Increased Vascular Permeability in Inflammation. Academic Press, New York/LondonCrossRefGoogle Scholar
  40. Wuthrich, R., Jevnikar, A., Fumio, T., Glimcher, L. and Kelley, V. (1990). Intercellular adhesion molecule-1 (ICAM-1) expression is upregulated in autoimmune murine lupus nephritis. Am. J. Pathol., 136, 441–450PubMedPubMedCentralGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1992

Authors and Affiliations

  • Jutta Schaper
  • S. Hein
  • C. M. Heinrichs
  • D. Weihrauch

There are no affiliations available

Personalised recommendations