Advertisement

Lipid Metabolism and Myocardial Damage During Ischaemia

  • Terje S. Larsen
  • Truls Myrmel
  • Kirsti Ytrehus
  • Ole D. Mjøs
Chapter
  • 6 Downloads

Abstract

Fatty acids are the preferred physiological substrate for oxidative energy production in the heart (Neely et al., 1972, 1974). On the other hand, there is good evidence to believe that the high levels of non-esterified fatty acids observed in patients after myocardial (Kurien et al., 1966; Oliver, 1972; Opie, 1975) infarction may be harmful to jeopardized myocardium. Thus, fatty acids have been associated with increased risk of arrhythmias in both patients and experimental animals exposed to myocardial ischaemia (Mjøs et al., 1974; Mjøs, 1978). High levels of fatty acids have also been shown to depress recovery of mechanical function in both hypoxic rat hearts (Henderson et al., 1970) and ischaemic swine hearts (Liedtke et al., 1978).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Bruch, R. C. and Thayer, W. S. (1984). Differential effect of lipid peroxidation on membrane fluidity as determined by electron spin resonance probes. Biochem. Biophys. Acta, 733, 216–222CrossRefGoogle Scholar
  2. Burton, K. P., Buja, L. M., Sen, A., Willerson, J. T. and Chien, K. R. (1986). Accumulation of arachidonate in triacylglycerols and unesterified fatty acids during ischemia and reflow in the isolated rat heart. Am. J. Pathol., 124, 238–245PubMedPubMedCentralGoogle Scholar
  3. Candenas, E. (1989). Biochemistry of oxygen toxicity. Ann. Rev. Biochem., 58, 79–110CrossRefGoogle Scholar
  4. Challoner, D. R. and Steinberg, D. (1966). Oxidative metabolism of myocardium as influenced by fatty acids and epinephrine. Am. J. Physiol., 211, 897–902Google Scholar
  5. Chien, K. R., Pfau, R. G. and Farber, J. L. (1979). Ischemic cell injury. Prevention by chlorpromazine of an accelerated phospholipid degradation and associated membrane dysfunction. Am. J. Pathol., 97, 505–530PubMedPubMedCentralGoogle Scholar
  6. Chien, K. R., Reeves, J. P., Buja, L. M., Bonte, F., Parkey, R. W. and Willerson, J. T. (1981). Phospholipid alterations in canine ischemic myocardium. Temporal and topographical correlations with Tc-99 m PPi accumulation and on in vitro sarcolemmal permeability defect. Circ. Res., 48, 711–719PubMedCrossRefGoogle Scholar
  7. Corr, P. B., Gross, R. W. and Sobel, B. E. (1982a). Arrhythmogenic amphophilic lipids and the myocardial cell membrane. J. Mol. Cell. Cardiol., 14, 619–626PubMedCrossRefGoogle Scholar
  8. Corr, P. B., Snyder, D. W., Lee, B. I., Gross, R. W., Keim, C. R. and Sobel, B. E. (1982b). Pathophysiological concentrations of lysophosphatides and the slow response. Am. J. Physiol., 243, H187–H195PubMedGoogle Scholar
  9. Corr, P. B., Gross, R. W. and Sobel, B. E. (1984). Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circ. Res., 55, 135–154PubMedCrossRefGoogle Scholar
  10. Crass, M. F., III, McCaskell, E. S., Shipp, J. C. and Murthy, V. K. (1971). Metabolism of endogenous lipids in cardiac muscle: effect of pressure development. Am. J. Physiol., 220, 428–435PubMedGoogle Scholar
  11. Curtis, M. T., Gilford, D. and Farber, J. L. (1984). Lipid peroxidation increases the molecular order of microsomal membranes. Arch. Biochem. Biophys., 235, 644–649PubMedCrossRefGoogle Scholar
  12. de Groot, H. and Littauer, A. (1989). Hypoxia, reactive oxygen and cell injury. Free Rad. Biol. Med., 6, 541–551PubMedCrossRefGoogle Scholar
  13. De Groot, M. J. M., Willemsen, P. H. M., Coumans, W. A., van Bilsen, M. and Van der Vusse, G. J. (1989). Lactate-induced stimulation of myocardial triacylglycerol turnover. Biochim. Biophys. Acta, 1006, 111–115PubMedCrossRefGoogle Scholar
  14. Ford, D. A. and Gross, R. W. (1989). Differential accumulation of diacyl and plasmalogenic diglycerides during myocardial ischemia. Circ. Res., 64, 173–177PubMedCrossRefGoogle Scholar
  15. Hegstad, A.-C., Strand, H. and Ytrehus, K. (1990). Selective measurements of phospholipid peroxidation in ischaemic, reperfused and oxygen radical perfused isolated rat hearts. J. Mot. Cell. Cardiol., 22, (Suppl. III), 118Google Scholar
  16. Henderson, A. H., Most, A. S., Parmley, W. W., Gorlin, R. and Sonnenblick, E. H. (1970). Depression of myocardial contractility in rats by free fatty acids during hypoxia. Circ. Res., 26,439–449PubMedCrossRefGoogle Scholar
  17. Hostetler, K. Y. and Hall, L. B. (1980). Phospholipase C activity of rat tissues. Biochem. Biophys. Res. Commun., 96, 388–393PubMedCrossRefGoogle Scholar
  18. Karwatowska-Krynska, E. and Beresewicz, A. (1983). Effect of locally released catecholamines on lipolysis and injury on the hypoxic isolated rabbit heart. J. Mol. Cell. Cardiol., 15, 523–536PubMedCrossRefGoogle Scholar
  19. Katz, A. M. and Messineo, F. C. (1981). Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ. Res., 48, 1–16PubMedCrossRefGoogle Scholar
  20. Kryski, A., Jr., Kenno, K. A. and Severson, D. L. (1985). Stimulation of lipolysis in rat heart myocytes by isoproterenol. Am. J. Physiol., 248, H208–H216PubMedGoogle Scholar
  21. Kuijk, F. J. G. M., Sevanian, A., Handelman, G. J. and Dratz, E. A. (1987). A new role for phospholipase A2: protection of membranes from lipid peroxidation damage. TIBS, 12,31–34Google Scholar
  22. Kurien, V. A., and Oliver, M. F. (1966). Serum free fatty acids after acute myocardial infarction and cerebral vascular occlusion. Lancet, 2, 122–127PubMedCrossRefGoogle Scholar
  23. Larsen, T. S., Myrmel, T., Skulberg, A., Severson, D. L. and Mjøs, O. D. (1989). Effects of hypoxia on lipolysis in isolated rat myocardial cells. Mot. Cell. Biochem., 88, 139–144Google Scholar
  24. Liedtke, A. J., Nellis, S. and Neely, J. R. (1978). Effects of excess free fatty acids on mechanical and metabolic function in normal and ischemic myocardium in swine. Circ. Res., 43, 652–661PubMedCrossRefGoogle Scholar
  25. Mjøs, O. D. (1978). Effect of free fatty acids on myocardial function and oxygen consumption in intact dogs. J. Clin. Invest., 50, 1386–1389CrossRefGoogle Scholar
  26. Mjøs, O. D., Kjekshus, J. K. and Lekven, J. (1974). Importance of free fatty acids as a determinant of myocardial oxygen consumption and myocardial ischemic injury during norepinephrine infusion in dogs. J. Clin. Invest., 53, 1290–1299PubMedPubMedCentralCrossRefGoogle Scholar
  27. Myrmel, T., Forsdahl, K., Sager, G. and Larsen, T. S. (1991). Regulation of lipolysis in normoxic and hypoxic rat myocytes. J. Mot. Cell. Cardiol., 23, 207–215CrossRefGoogle Scholar
  28. Myrmel, T., Larsen, T., Forsdahl, K., Skulberg, A. and Little, C. (1989). Phospholipase C-evoked glycerol release in energy depleted rat myocardial cells. Mot. Cell. Biochem., 88, 139–144Google Scholar
  29. Neely, J. R. and Morgan, H. E. (1974). Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann. Rev. Physiol., 36, 413–458CrossRefGoogle Scholar
  30. Neely, J. R., Rovetto, M. J. and Oram, J. F. (1972). Myocardial utilization of carbohydrate and lipids. Prog. Cardiovasc. Dis., 15, 389–399CrossRefGoogle Scholar
  31. Oliver, M. F. (1972). Metabolic response during myocardial infarction. I. Relevance of studies on glucose and fatty acid metabolism in man. Circulation, 45, 491–500Google Scholar
  32. Olson, R. E. and Hoeschen, R. J. (1967). Utilization of endogenous lipid by the isolated perfused rat heart. Biochem. J., 103, 796–801PubMedPubMedCentralCrossRefGoogle Scholar
  33. Opie, L. H. (1975). Metabolism of free fatty acids, glucose and catecholamines in acute myocardial infarction. Am. J. Cardiol., 36, 938–953PubMedCrossRefGoogle Scholar
  34. Oram, J. F., Bennetch, S. L. and Neely, J. R. (1973). Regulation of fatty acid utilization in isolated perfused rat hearts. J. Biol. Chem., 248, 5299–5309PubMedGoogle Scholar
  35. Post, J. A., Nievelstein, P. F. E. M., Leunissen-Bijvelt, J. and Verkleij, A. J. (1985a). Ultrastructural changes of sarcolemma and mitochondria in the isolated rabbit heart during ischemia and reperfusion. Biochim. Biophys. Acta, 845, 119–123PubMedCrossRefGoogle Scholar
  36. Post, J. A., Nievelstein, P. F. E. M., Leunissen-Bijvelt, J., Verkleij, A. J. and Ruigrok, T. J. C. (1985b). Sarcolemmal disruption during the calcium paradox. J. Mol. Cell. Cardiol., 17, 265–273PubMedCrossRefGoogle Scholar
  37. Ramirez, I., Kryski, A. J., Ben-Zeev, O., Schotz, M. C. and Severson, D. L. (1985). Characterization of triacylglycerol hydrolase activities in isolated myocardial cells from rat heart. Biochem. J., 232, 229–236PubMedPubMedCentralCrossRefGoogle Scholar
  38. Romachin, A. D., Rebeyka, I., Wilson, G. J. and Micle, D. A. G. (1987). Conjugated diens in ischemic and reperfused myocardium; in vivo chemical signature of oxygen free radical mediated injury. J. Mol. Cell. Cardiol., 19, 289–302CrossRefGoogle Scholar
  39. Schrijvers, A. H. G. J., de Groot, M. J. M., Heijnen, V. V. Th., van der Vusse, G. J., Frederik, P. M. and Reneman, R. S. (1990). Ischemia and reperfusion induced multilamellar vesicles in isolated rabbit hearts: time correlations between morphometric data and metabolic alterations. J. Mol. Cell. Cardiol., 22, 653–665PubMedCrossRefGoogle Scholar
  40. Sevanian, A., Muakkassah-Kelly, S. F. and Montestruque, S. (1983). The influence of phospholipase A2 and glutathione peroxidase and the elimination of membrane lipid peroxides. Arch. Biochem. Biophys., 223, 441–452PubMedCrossRefGoogle Scholar
  41. Shaikh, N. A. and Downar, E. (1981). Time course of changes in porcine myocardial phospholipid levels during ischemia. A reassessment of the lysolipid hypothesis. Circ. Res., 49, 316–325PubMedGoogle Scholar
  42. Stam, H., Broekhoven-Schokker, S. and Hiilsmann, W. C. (1986). Studies on the involvement of lipolytic enzymes in endogenous lipolysis of the isolated rat heart. Biochim. Biophys. Acta, 875, 87–96PubMedCrossRefGoogle Scholar
  43. Stenbergen, C. and Jennings, R. B. (1984). Relationship between lysophospholipid accumulation and plasma membrane injury during total in vitro ischemia in dog heart. J. Mol. Cell. Cardiol., 16, 605–621CrossRefGoogle Scholar
  44. Van der Vusse, G. J., van Bilsen, M. and Reneman, R. S. (1989). Is phospholipid degradation a critical event in ischemia- and reperfusion-induced damage? News Physiol. Sci., 4, 49–53Google Scholar
  45. Van der Vusse, G. J., Roemen, T. H. M., Prinzen, F. W., Coumans, W. A. and Reneman, R. S. (1982). Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions. Circ. Res., 50, 538–546PubMedCrossRefGoogle Scholar
  46. Wolf, R. A. and Gross, R. W. (1985). Identification of neutral active phospholipase C which hydrolyzes choline glycerophospholipids and plasmalogen selective phospholipase A2 in canine myocardium. J. Biol. Chem., 260, 7295–7303PubMedGoogle Scholar
  47. Ytrehus, K., Myklebust, R., Olsen, R. and Mjøs, O. D. (1987). Ultrastructural changes induced in the isolated rat heart by enzymatically generated oxygen radicals. J. Mol. Cell. Cardiol., 19, 379–389PubMedCrossRefGoogle Scholar
  48. Ytrehus, K., Rotevatn, S., Saetersdal, T. and Mj¢s, O. D. (1989). Mitochondrial calcium in hearts subjected to lipid peroxidation with contracture development. Basic. Res. Cardiol., 84, 646–652PubMedCrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1992

Authors and Affiliations

  • Terje S. Larsen
  • Truls Myrmel
  • Kirsti Ytrehus
  • Ole D. Mjøs

There are no affiliations available

Personalised recommendations