Myocardial Response to Reperfusion after a Prolonged Period of Ischaemia

  • R. Ferrari


The term ‘myocardial ischaemia’ describes a condition which exists when fractional uptake of oxygen in the heart is not sufficient to maintain the zate of cellular oxidation (Jennings, 1970). This leads to an extremely complex situation which has been extensively studied in recent years (Hillis and Braunwald, 1977; Nayler et al., 1979; Jennings and Reimer, 1981; Neely and Feuvray, 1981; Bourdillon and Poole-Wilson, 1982; Ferrari et al., 1986b).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akizuki, S., Yoshida, S. and Chambers, D. E. (1985). Infarct size limitation by the xanthine oxidase inhibitor, allopurinol, in closed chest dogs with small infarcts. Cardiovasc. Res., 19, 686–692PubMedCrossRefGoogle Scholar
  2. Al-Khalidi, U. A. S. and Chaglassian, T. H. (1965). The species distribution of xanthine oxidase. Biochem. J., 97, 318–320PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arnold, W. L., De Wall, R. H., Keydi, P. and Eward, H. H. (1986). The effect of allopurinol on the degree of early myocardial ischaemia. Am. Heart J., 99, 614–624CrossRefGoogle Scholar
  4. Bergmann, S. R., Ferguson, T. B. and Sobel, B. E. (1981). Effect of amphiphiles on erythrocytes, coronary arteries, and perfused hearts. Am. J. Physiol., 240, H229–H237PubMedGoogle Scholar
  5. Bieber, L. L., Ermans, R., Valkeur, K. and Farrel, S. (1982). Possible functions of short and medium chain carnitine acyltransferases. Fed. Proc., 41, 2858–2862PubMedGoogle Scholar
  6. Bolli, R., Patel, B. S. and Zhu, W. X. (1987). The iron chelator desferrioxamine attenuates postischemic ventricular dysfunction. Am. J. Physiol., 253, H1372–H1380PubMedGoogle Scholar
  7. Borst, P., Loos, J. A., Christ, E. J. and Slater, E. C. (1962). Uncoupling activity of long-chain fatty acids. Biochem. Biophys. Acta, 62, 509–518PubMedCrossRefGoogle Scholar
  8. Bourdillon, P. D. and Poole-Wilson, P. A. (1981). Effects of ischaemia and reperfusion on calcium exchange and mechanical function in isolated rabbit myocardium. Cardiovasc. Res., 15, 121–130PubMedCrossRefGoogle Scholar
  9. Bourdillon, P. D. and Poole-Wilson, P. A. (1982). The effects of verapamil, quiescence and cardioplegia on calcium exchange and mechanical function in ischaemic rabbit myocardium. Circ. Res., 50, 360–368PubMedCrossRefGoogle Scholar
  10. Braunwald, E. and Kloner, R. (1985). Myocardial reperfusion: a double edged sword. J. Clin. Invest., 76, 1713–1719PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bremer, J. (1983). Carnitine metabolism and function. Physiol. Rev., 63, 1420–1480PubMedGoogle Scholar
  12. Carafoli, E. (1975). Mitochondria, Ca2+ transport and the regulation of heart contraction and metabolism. J. Mol. Cell. Cardiol., 7, 83–91PubMedCrossRefGoogle Scholar
  13. Carafoli, E., Malmstrom, K., Sigel, E. and Crompton, M. (1976). The regulation of intracellular calcium. Clin. Endocrin., 5, 495–503CrossRefGoogle Scholar
  14. Caroni, P. and Carafoli, E. (1981). The Ca2+-pumping ATPase of heart sarcolemma characterization, calmodulin dependence and partial purification. J. Biol. Chem., 256, 3263–3269PubMedGoogle Scholar
  15. Ceconi, C., Cargnoni, A., Pasini, E., Condorelli, E., Curello, S. and Ferrari, R. (1991). Evaluation of phospholipid peroxidation as malondialdehyde during myocardial ischaemia and reperfusion injury. Am. J. Physiol. (in press)Google Scholar
  16. Ceconi, C., Curello, S., Cargnoni, A., Boffa, G. M. and Ferrari, R. (1990). Antioxidant protection against ischaemia and reperfusion heart damage: effect of the sulphydryl agent dimercapto-propanol. Cardioscience, 1(3), 191–198PubMedGoogle Scholar
  17. Ceconi, C., Curello, S., Cargnoni, A., Ferrari, R., Albertini, A. and Visioli, O. (1988). The role of glutathione status in the protection against ischaemic and reperfusion damage: effects of N-acetyl cysteine. J. Mol. Cell. Cardiol., 20, 5–13PubMedCrossRefGoogle Scholar
  18. Chambers, D. E., Parks, D. A. and Patterson, G. (1985). Xanthine oxidase as a source of free radical in myocardial ischaemia. J. Mol. Cell. Cardiol., 17, 145–152PubMedCrossRefGoogle Scholar
  19. Chua, B. H. and Shrago, E. (1977). Reversible inhibition of adenine nucleotide translocation by long chain acyl CoA esters in bovine heart mitochondria and inverted submitochondrial particles. J. Biol. Chem., 252, 6711–6714PubMedGoogle Scholar
  20. Corr, P. B., Gross, R. W. and Sobel, B. E. (1984). Amphipathic metabolites and membrane dysfunction in isehemic myocardium. Circ. Res., 55, 135–154PubMedCrossRefGoogle Scholar
  21. Crompton, M., Sigel, E., Salzmann, M. and Carafoli, E. (1976). A kinetic study of the energy linked influx of Ca2+ into heart mitochondrial. Eur. J. Biochem., 69, 429–434CrossRefGoogle Scholar
  22. Curello, S., Bigoli, C., Ferrari, R., Albertini, A. and Guarnieri, C. (1985). Change in the cardiac glutathione status after ischemia and reperfusion. Experientia, 41, 42–43PubMedCrossRefGoogle Scholar
  23. Curello, S., Ceconi, C., Medici, D. and Ferrari, R. (1986). Oxidative stress during myocardial ischaemia and reperfusion: experimental and clinical evidences. J. Appl. Cardiol., 1, 311–327Google Scholar
  24. Di Lisa, F., Raddino, R., Bertorelli, D., Ferrari, R. and Visioli, O. (1982). Glucose and FFA as myocardial substrate during ischaemia. In Caldarera, C. M. and Harris, P. (Eds), Advances in Studies on Heart Metabolism. Clueb Publication, Bologna, pp. 269–274Google Scholar
  25. Dormandy, T. L. (1978). Free radical oxidation and antioxidants. Lancet, 1, 647–650PubMedCrossRefGoogle Scholar
  26. Downey, J., Chambers, D. and Miura, T. (1986). Allopurinol fails to limit infarct size in a xanthine oxidase-deficient species. Circulation, 74, (Suppl), 372Google Scholar
  27. Egan, R. W., Paxton, J. and Kuehl, F. A. (1976). Mechanisms for the irreversible self deactivation of prostaglandin synthetase. J. Biol. Chem., 251, 7329–7335PubMedGoogle Scholar
  28. Enhgerson, T. D., McKelvey, T. G. and Rhynie, D. B. (1987). Conversion of xanthine dehydrogenase to oxidase in ischaemic rat tissue. J. Clin. Invest., 79, 2564–2570Google Scholar
  29. Fabiato, A. and Fabiato, F. (1977). Calcium release from the sarcoplasmic reticulum. Circ. Res., 40, 119–126PubMedCrossRefGoogle Scholar
  30. Ferrari, R. (1988). Carnitine and cardiac energy supply. In de Jong, J. W. (Ed.), Myocardial Energy Metabolism. Martinus Nijhoff, Dordrecht/Boston/Lancaster, pp. 35–43CrossRefGoogle Scholar
  31. Ferrari, R., Albertini, A., Curello, S., Ceconi, C., Di Lisa, F., Raddino, R. and Visioli, O. (1986a). Myocardial recovery during post-ischaemic reperfusion: effect of nifedipine, calcium and magnesium. J. Mol. Cell. Cardiol., 18, 484–498Google Scholar
  32. Ferrari, R., Alfieri, O., Curello, S., Ceconi, C., Cargnoni, A., Marzollo, P., Pardini, A., Caradonna, E. and Visioli, O. (1990). The occurrence of oxidative stress during reperfusion of the human heart. Circulation, 81(1), 201–211PubMedCrossRefGoogle Scholar
  33. Ferrari, R., Cargnoni, A., Ceconi, C., Curello, S., Albertini, A. and Visioli, O. (1987). Role of oxygen in the myocardial ischaemic and reperfusion damage: protective effects of Vitamin E. In Hayaishi, O. and Mino, M. (Eds), Clinical and Biochemical Aspects of Vitamin E. Elsevier, Amsterdam, pp. 209–226Google Scholar
  34. Ferrari, R., Cargnoni, A., Curello, S., Boffa, G. M. and Ceconi, C. (1989). Effects of iloprost (ZK 36374) on glutathione status during ischaemia and reperfusion of rabbit isolated hearts. Br. J. Pharmacol., 98, 678–684PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ferrari, R., Ceconi, C., Curello, S., Cargnoni, A., Agnoletti, G., Boffa, G. M. and Visioli, O. (1986b). Intracellular effects of myocardial ischaemia and reperfusion: role of calcium and oxygen. Eur. Heart J., 7, 3–12PubMedGoogle Scholar
  36. Ferrari, R., Ceconi, C., Curello, S., Guarnieri, C., Caldarera, C. M., Albertini, A. and Visioli, O. (1985). Oxygen mediated myocardial damage during ischemia and reperfusion: role of the cellular defences against oxygen toxicity. J. Mol. Cell. Cardiol., 17, 937–945PubMedCrossRefGoogle Scholar
  37. Ferrari, R., Ceconi, C., Curello, S., Cargnoni, A. and Medici, D. (1986c). Oxygen free radicals and reperfusion injury: the effects of ischaemia and reperfusion on the cellular ability to neutralize oxygen toxicity. J. Mol. Cell. Cardiol., 18, 67–69PubMedCrossRefGoogle Scholar
  38. Ferrari, R., Curello, S., Cargnoni, A., Condorelli, E., Belloli, S., Albertini, A. and Visioli, O. (1988a). Metabolic changes during post-ischaemic reperfusion. J. Mol. Cell. Cardiol., 20, 119–133PubMedCrossRefGoogle Scholar
  39. Ferrari, R., Curello, S., Ceconi, C., Cargnoni, A., Condorelli, E. and Albertini, A. (1988b). Alterations of glutathione status during myocardial ischaemia and reperfusion. In Singel, P. K. (Ed.), Oxygen Radicals in the Pathophysiology of Heart Disease. Kluwer Academic, Boston/Dordrecht/Lancaster, pp. 145–160CrossRefGoogle Scholar
  40. Ferrari, R., Di Lisa, F., Raddino, R., Ceconi, C., Curello, S., Bigoli, C. and Visioli, O. (1984). Factors influencing the metabolic and functional alterations induced by ischaemia and reperfusion. In Ferrari, R., Katz, A., Shug, A. and Visioli, O. (Eds), Myocardial Ischaemia and Lipid Metabolism, Plenum Press, New York, pp. 135–157CrossRefGoogle Scholar
  41. Ferrari, R., Di Lisa, F., Raddino, R. and Visioli, O. (1982a). Effects of myocardial calcium overloading during ischaemia and reperfusion on ATP synthesis. In Godfrain, T., Albertini, A. and Paoletti, R. (Eds), Calcium Modulators Elsevier Biochemical Press, Amsterdam/New York/Oxford, pp. 99–117Google Scholar
  42. Ferrari, R., Di Lisa, F., Raddino, R. and Visioli, O. (1982b). The effects of ruthenium red on mitochondrial function during post-ischaemic reperfusion. J. Mol. Cell. Cardiol., 14, 737–740PubMedCrossRefGoogle Scholar
  43. Ferrari, R., Llesuy, S. and Milei, S. (1988). Assessment of myocardial oxidative stress in patients after myocardial revascularization. Am. Heart J., 115, 307–312CrossRefGoogle Scholar
  44. Ferrari, R. and Williams, A. J. (1986). The role of mitochondrial in myocardial damage occurring on post-ischaemic reperfusion. J. Appl. Cardiol. 1, 501–519Google Scholar
  45. Ferrari, R., Williams, A. and Di Lisa, F. (1982c). The role of mitochondrial function in the ischaemic and reperfused myocardium. In Caldarera, C. M. and Harris, P. (Eds), Advances in Studies on Heart Metabolism. Clueb Publication, Bologna, pp. 245–255Google Scholar
  46. Ganote, C. E. and Kaltenbach, J. P. (1979). Oxygen-induced enzyme release: early events and a proposed mechanism. J. Mol. Cell. Cardiol., 11, 389–406PubMedCrossRefGoogle Scholar
  47. Ganz, W., Buchbinder, N., Marcus, H., Mondkar, A., Maddahi, J., Charuzi, Y., O’Connor, L., Shell, W., Fishbein, M. C., Kass, R., Miyamoto, A. and Swan, H. J. C. (1981). Intracoronary thrombolysis in evolving myocardial infarction. Am. Heart J., 101, 4–13PubMedCrossRefGoogle Scholar
  48. Garlick, P. B., Davies, M. J., Hearse, D. J. and Slater, T. F. (1987). Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circ. Res., 61, 757–760PubMedCrossRefGoogle Scholar
  49. Gauduel, Y. and Duvelleroy, M. A. (1984). Role of oxygen radicals in cardiac injury due to reoxygenation. J. Mol. Cell. Cardiol., 16, 459–470PubMedCrossRefGoogle Scholar
  50. Gruntzig, A. R., Senning., A. and Siegenthaler, W. E. (1979). Non-operative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. New Engl. J. Med., 301, 61–68PubMedCrossRefGoogle Scholar
  51. Gupta, D. K., Jewitt, D. E., Young, R., Hartog, M. and Opie, L. W. (1969). Increased plasma-free-fatty acid concentrations and their significance in patients with acute myocardial infarction. Lancet, 2, 1209–1213PubMedCrossRefGoogle Scholar
  52. Gutteridge, J. M. C. and Quinlan, G. J. (1983). Malondialdehyde formation from lipid peroxides in the thiobarbituric acid test: the role of lipid radicals, iron salts and metal chelators. J. Appl. Biochem., 5, 293–299PubMedGoogle Scholar
  53. Harris, P. (1975). A theory concerning the course of events in angina and myocardial infarction. Ear. J. Cardiol., 3, 157–161Google Scholar
  54. Hasselbach, W. and Suko, J. (1974). Calcium and phosphate turnover in the sarcoplasmic membranes. Biochem. Soc. Spec. Publ., 4, 159–171CrossRefGoogle Scholar
  55. Hearse, D. J. (1977). Reperfusion of ischaemic myocardium. J. Mot. Cell. Cardiol., 9, 607–616Google Scholar
  56. Hearse, D. J. (1984). Critical distinction in the modification of myocardial cell injury. In Opie, L. H. (Ed.), Calcium Antagonists and Cardiovascular Disease. Raven Press, New York, pp. 129–135Google Scholar
  57. Hearse, D. J. (1990). Ischaemia, reperfusion and the determinants of tissue injury. Cardiovasc. Drugs Ther., 4, 767–776PubMedCrossRefGoogle Scholar
  58. Henderson, A. C., Most, A. S., Parmely, W. W., Gorlin, R. and Sonnenblick, E. H. (1970). Depression of myocardial contractility in rats by free fatty acids during hypoxia. Circ. Res., 26, 439–449PubMedCrossRefGoogle Scholar
  59. Hillis, J. and Braunwald, E. (1977). Myocardial ischaemia. New Engl. J. Med., 17, 920–932Google Scholar
  60. Hulsmann, W. C., Elliot, W. B. and Slater, E. C. (1960). The nature and mechanisms of action of uncoupling agents present in mitochrome preparations. Biochem. Biophys. Acta, 39,267–276PubMedCrossRefGoogle Scholar
  61. Idell-Wenger, J. A., Grotyohann, L. W. and Neely, J. R. (1978). Coenzyme A and carnitine distribution in normal and ischemic hearts. J. Biol. Chem., 253, 4310–4318PubMedGoogle Scholar
  62. Jennings, R. B. (1970). Myocardial ischaemia observations, definitions and speculations. J. Mot. Cell. Cardiol., 1, 345–349CrossRefGoogle Scholar
  63. Jennings, R. B. and Reimer, K. A. (1981). Lethal myocardial ischaemic injury. Am. J. Pathol., 102, 241–255PubMedPubMedCentralGoogle Scholar
  64. Jennings, R. B., Reimer, K. A. and Steenbergen, C. (1986). Myocardial ischaemia revisited. The osmolar load, membrane damage, and reperfusion. J. Mot. Cell. Cardiol., 18, 769–780CrossRefGoogle Scholar
  65. Jolly, S. R., Kane, W. J. and Bailie, M. B. (1984). Canine myocardial reperfusion injury: its reduction by the combined administration of superoxide dismutase and catalase. Circ. Res., 54, 277–285PubMedCrossRefGoogle Scholar
  66. Katz, A. M. (1982). Membrane-derived lipids in the pathogenesis of ischemic myocardial damage. J. Mot. Cell. Cardiol., 14, 627–632CrossRefGoogle Scholar
  67. Katz, A. M. and Messineo, F. C. (1981). Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ. Res., 48, 1–16PubMedCrossRefGoogle Scholar
  68. Kehrer, J. P., Piper, H. and Sies, H. (1987). Xanthine oxidase is not responsible for reoxygenation injury in isolated perfused rat heart. Free Rad. Res. Commun., 3, 69–78CrossRefGoogle Scholar
  69. Kjekshus, J. K. (1974). Effect of inhibition of lipolysis on heart failure following acute coronary occlusion in the dog. Cardiovasc. Res., 8, 73–80PubMedCrossRefGoogle Scholar
  70. Kjekshus, J. K. and Mj∅s, O. D. (1972). Effect of free fatty acids on myocardial function and metabolism in the ischemic dog heart. J. Clin. Invest., 51, 1767–1776PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kjekshus, J. K. and Mjds, O. D. (1973). Effect of inhibition of lipolysis on infarct size after experimental coronary artery occlusion. J. Clin. Invest., 52, 1770–1778PubMedPubMedCentralCrossRefGoogle Scholar
  72. Koomen, J. M., Schevers, J. A. M. and Noordhoek, J. (1983). Myocardial recovery from global ischaemia and reperfusion. Effects of pre- and/or post-ischaemic perfusion with low calcium. J. Mot. Cell. Cardiol., 15, 383–392CrossRefGoogle Scholar
  73. Lancet (1990). Carnitine deficiency. Lancet, 335, 631–632CrossRefGoogle Scholar
  74. Langer, G. A. (1980). The role of calcium in the control of myocardial contractility: an update. J. Mot. Cell. Cardiol., 12, 231–237CrossRefGoogle Scholar
  75. Lazdunski, M., Frelin, C. and Vigne, P. (1985). The sodium/hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J. Mot. Cell. Cardiol., 17, 1029–1042CrossRefGoogle Scholar
  76. Lehninger, A. L. (1970). Mitochondria and calcium ion transport. Biochem. J., 119, 129–133PubMedPubMedCentralCrossRefGoogle Scholar
  77. Liedtke, A. J. (1981). Alterations of carbohydrates and lipid metabolism in the acutely ischemic heart. Prog. Cardiovasc. Dis., 23, 321–336PubMedCrossRefGoogle Scholar
  78. Liedtke, A. J., De Maison, L., Eggleston, A. M., Cohen, L. M. and Nellis, S. H. (1988). Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ. Res., 62, 535–542PubMedCrossRefGoogle Scholar
  79. Liedtke, A. J., Mahar, C. Q., Ytrehus, K. and Mjøs, O. D. (1984b). Estimates of free-radical production in rat and swine hearts: Method and application of measuring malondialdehyde levels in fresh and frozen myocardium. Basic Res. Cardiol., 79, 513–518PubMedCrossRefGoogle Scholar
  80. Liedtke, A. J., Nellis, S. and Neely, J. R. (1978). Effects of excess free fatty acids on mechanical and metabolic function in normal and ischemic myocardium in swine. Circ. Res., 43, 652–661PubMedCrossRefGoogle Scholar
  81. Liedtke, A. J., Nellis, S. H. and Mjøs, O. D. (1984a). Effects of reducing fatty acid metabolism on mechanical function in regionally ischemic hearts. Am. J. Physiol., 247, H378–H394Google Scholar
  82. Lochner, A., Kotze, J. C. N. and Gevers, W. (1976). Mitochondrial oxidative phosphorylation in myocardial anoxia: effects of albumin. J. Mol. Cell. Cardiol., 8, 465–480PubMedCrossRefGoogle Scholar
  83. Lopaschuk, G. D., Tahiliani, A. G., Vadlaumudi, R. V. S. V., Katz, S. and McNeill, J. H. (1983). Cardiac sarcoplasmic reticulum function in insulin or carnitine-treated diabetic hearts. Am. J. Physiol., 245, H969–H976PubMedGoogle Scholar
  84. McCord, J. M. and Fridovich, I. (1969). Superoxide dismutase, and enzymic function for erythrocuprein. J. Biol. Chem., 244, 6090–6095Google Scholar
  85. McDonough, K. H. and Neely, J. R. (1988). Inhibition of myocardial lipase by palmitoyl CoA. J. Mol. Cell. Cardiol., 20 (Suppl. 2), 31–39PubMedCrossRefGoogle Scholar
  86. Mak, I. T., Kramer, J. H. and Weglicki, W. B. (1986). Potentiation of free radical-induced lipid peroxidative injury to sarcolemmal membranes by lipid amphiphiles. J. Biol. Chem., 261,1153–1157PubMedGoogle Scholar
  87. Manning, A. S. and Hearse, D. J. (1984). Reperfusion induced arrhythmias: mechanism and prevention. J. Mol. Cell. Cardiol., 16, 497–518PubMedCrossRefGoogle Scholar
  88. Mathey, D. G., Kuck, T. H., Tilsner, V., Krebber, H. J. and Bleifeld, W. (1981). Nonsurgical coronary artery recanalization after acute transluminal infarction. Circulation, 67,489–497CrossRefGoogle Scholar
  89. Meerson, F. Z., Kagan, V. E., Kozlov, Yu. P., Belkina, L. M. and Arkhipenko, Yu. V. (1982). The role of lipid peroxidation in pathogenesis of ischemic damage and the antioxidants protection of the heart. Basic. Res. Cardiol., 77, 465–485PubMedCrossRefGoogle Scholar
  90. Meyers, M. L., Bolli, R. and Leich, F. (1986). N-2-Mercaptopropionylglycine improves recovery of myocardial function following reversible regional ischaemia. J. Am. Coll. Cardiol., 8, 1161–1168CrossRefGoogle Scholar
  91. Miller, K. W., Paton, W. D. M., Smith, E. B. and Smith, R. A. (1972). Physicochemical approaches to the mode of action of general anesthetics. Anesthesiology, 36, 339–351PubMedCrossRefGoogle Scholar
  92. Miller, N. E., Mj∅s, O. D. and Oliver, M. F. (1976). Relationship of epicardial ST segment elevation to the plasma free fatty acids/albumin ratio during coronary occlusion in dogs. Clin. Sci. Mol. Med., 51, 209–213PubMedGoogle Scholar
  93. Miller, W. P., Liedtke, A. J. and Nellis, S. H. (1986). Effects of 2-tetradecylglycidic acid on myocardial function in swine hearts. Am. J. Physiol., 251, H547–H553PubMedGoogle Scholar
  94. Mj∅s, O. D., Kjekshus, J. K. and Lekven, J. (1974). Importance of free fatty acids as a determinant of myocardial oxygen consumption and myocardial ischemic injury during norepinephrine infusion in dogs. J. Clin. Invest., 53, 1290–1299CrossRefGoogle Scholar
  95. Most, A. S., Capone, R. J., Szydlik, P., Bruno, C. A. and De Vona, T. S. (1974). Failure of free fatty acids to influence degree of myocardial injury following acute coronary artery occlusion in pigs. Cardiology, 59, 201–212PubMedCrossRefGoogle Scholar
  96. Murphy, E., Aiton, J. F., Horres, C. R. and Lieberman, M. (1983). Calcium elevation in cultured heart cells: its role in cell injury. Am. J. Physiol., 245, C316–C321PubMedGoogle Scholar
  97. Murry, C. C., Jennings, R. B. and Reimer, K. A. (1986). Preconditioning with ischaemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 75, 1124–1136CrossRefGoogle Scholar
  98. Nakazawa, H., Ban, K. and Okino, H. (1986). The quantification of free radicals in myocardium obtained by superapid sampling and freezing. Circulation, 74, (Suppl.), 433Google Scholar
  99. Nayler, W. G. (1981). The role of calcium in the ischaemic myocardium. Am. J. Pathol., 102, 262–270PubMedPubMedCentralGoogle Scholar
  100. Nayler, W. G., Ferrari, R. and Williams, A. (1980). Protective effect of pretreatment with verapamil, nifedipine and propranolol on mitochondrial function in the ischaemic and reperfused myocardium. Am. J. Cardiol., 46, 242–248PubMedCrossRefGoogle Scholar
  101. Nayler, W. G., Poole-Wilson, P. A. and Williams, A. (1979). Hypoxia and calcium. J. Mol. Cell. Cardiol., 11, 683–706PubMedCrossRefGoogle Scholar
  102. Neely, J. R. and Crotyohann, L. W. (1986). Role of glycolytic products in damage to ischemic myocardium: dissociation of adenosine triphosphate levels and recovery of function of reperfused ischaemic hearts. Circ. Res., 55, 814–824Google Scholar
  103. Neely, J. R. and Feuvray, D. (1981). Metabolic products and myocardial ischaemia. Am. J. Pathol., 102, 282–291PubMedPubMedCentralGoogle Scholar
  104. Nicholls, D. (1981). Some recent advances in mitochondrial calcium transport. Trends in Biochem. Science, February, 36–46Google Scholar
  105. Oliver, M. F., Kurien, V. A. and Greenwood, T. W. (1968). Relation between serum-free-fatty-acids and arrhythmias and death after acute myocardial infarction. Lancet, 1, 710–715PubMedCrossRefGoogle Scholar
  106. Opie, L. H., Thomas, M., Owen, P., Norris, R. M., Holland, A. J. and Van Noorden, S. (1971). Failure of high concentrations of circulating free fatty acids to provoke arrhythmias in experimental myocardial infarction. Lancet, 1, 818–822PubMedCrossRefGoogle Scholar
  107. Otani, H., Tanaka, H. and Inove, T. (1984). In vitro studies on contribution of oxidative metabolism of isolated rabbit heart mitochondria to myocardial reperfusion injury. Circ. Res., 55, 168–172PubMedCrossRefGoogle Scholar
  108. Parratt, J. R. and Wainwright, C. L. (1987). Failure of allopurinol and a spin-trapping agent N-t-alpha-phenylnitrone to modify significantly ischaemia and reperfusion-induced arrhythmias. Br. J. Pharmacol., 91, 49–59PubMedPubMedCentralCrossRefGoogle Scholar
  109. Pitts, B. J. R., Tate, C. A., Vanwinkle, W. B., Wood, J. M. and Entman, M. L. (1978). Palmitoyl carnitine inhibition of the calcium pump in cardiac and sarcoplasmic reticulum: A possible role in myocardial ischemia. Life Sci., 23, 391–402PubMedCrossRefGoogle Scholar
  110. Podzuwcit, J., Braun, W., Muller, A. and Schaper, W. (1986). Arrhythmias and infarction in the ischaemic pig heart are not mediated by xanthine-derived free oxygen radicals. Circulation, 74, (Suppl. II), 311–346Google Scholar
  111. Poole-Wilson, P. A. (1985). In Parratt, J. R. (Ed.), The Nature of Myocardial Damage Following Reoxygenation. Control and Manipulation of the Calcium Movement. Raven Press, New York, pp. 99–108Google Scholar
  112. Poole-Wilson, P. A., Harding, D. P., Bourdillon, P. D. V. and Tones, M. A. (1986). Calcium out of control. J. Mol. Cell. Cardiol., 16, 175–187CrossRefGoogle Scholar
  113. Pressman, B. C. and Lardy, H. A. (1956). Effect of surface active agents on the latent ATPase of mitochondria. Biochem. Biophys. Acta, 21, 458–466PubMedCrossRefGoogle Scholar
  114. Przyklenk, K. and Kloner, R. A. (1986). Superoxide dismutase plus catalase improve contractile function in the canine model of the stunned myocardium. Circ. Res., 58, 148–156PubMedCrossRefGoogle Scholar
  115. Rao, P. S., Cochen, M. V. and Muller, H. S. (1983). Production of free radicals and lipid peroxides in early experimental myocardial ischaemia. J. Mol. Cell. Cardiol., 15, 712–716Google Scholar
  116. Reibel, D. K. and Rovetto, M. J. (1972). Myocardial ATP synthesis and mechanical function following oxygen deficiency. Am. J. Physiol., 234, H620–H624Google Scholar
  117. Reimer, K. A. and Jennings, R. B. (1985). Failure of xanthine oxidase inhibitor allopurinol to limit infarct size after ischemia and reperfusion in dogs. Circulation, 71, 1069–1075PubMedCrossRefGoogle Scholar
  118. Reinke, L. A., Lai, E. K. and Dubose, C. M. (1987). Reactive free radical generation in vivo in the heart and liver of ethanol-fed rats: correlation with in vitro radical formation. Proc. Natl Acad. Sci. USA, 84, 9223–9227PubMedPubMedCentralCrossRefGoogle Scholar
  119. Rentrop, K. P., Blamke, H., Karsch, K. R., Kaiser, H. and Leitz, K. (1981). Selective intracoronary thrombolysis in acute myocardial infarction and unstable angina pectoris. Circulation, 63, 307–317PubMedCrossRefGoogle Scholar
  120. Reuter, H. (1974). Exchange of calcium ions in the mammalian myocardium. Mechanism and physiological significance. Circ. Res., 34, 599–611Google Scholar
  121. Romson, J., Hook, B. and Kunel, S. (1983). Reduction in the extent of ischaemic myocardial injury by neutrophil depletion in the dog. Circulation, 67, 1016–1023PubMedCrossRefGoogle Scholar
  122. Rottenberg, H. and Scarpa, A. (1974). Calcium uptake and membrane potential in mitochondria. Biochem., 13, 4811–4823CrossRefGoogle Scholar
  123. Russo, J. V. and Margolis, S. (1972). Hemodynamic effects of free fatty acid augmentation following myocardial infarction. Circulation, 45-46 (Suppl. II), 11–215Google Scholar
  124. Rutenberg, H. L., Pamintuan, J. C. and Soloff, L. A. (1969). Serum-free-fatty-acids and their relation to complications after acute myocardial infarction. Lancet, 2, 559–564PubMedCrossRefGoogle Scholar
  125. Severeid, L., Connor, W. E. and Long, J. P. (1969). The depressant effect of fatty acids on the isolated rabbit heart. Proc. Soc. Exp. Biol. Med., 131, 1239–1243PubMedCrossRefGoogle Scholar
  126. Severson, D. L. and Hurley, B. (1982). Regulation of rat heart triacylglycerol ester hydrolases by free fatty acids, fatty acyl CoA and fatty acyl carnitine. J. Mol. Cell. Cardiol., 14, 467–474PubMedCrossRefGoogle Scholar
  127. Shrago, E. (1978). The effect of long chain fatty acyl CoA esters on the adenine nucleotide translocase in myocardial metabolism. Life Sci., 22, 1–6PubMedCrossRefGoogle Scholar
  128. Shigekawa, M., Finegan, J. M. and Katz, A. M. (1976). Reaction mechanism of Ca2+-dependent ATP hydrolysis by skeletal muscle sarcoplasmic reticulum in the absence of added alkali metal salts. J. Biol. Chem., 253, 1451–1459Google Scholar
  129. Shine, K. I. and Douglas, A. M. (1983). Low calcium reperfusion of ischaemic myocardium. J. Mol. Cell. Cardiol., 15, 251–260PubMedCrossRefGoogle Scholar
  130. Spagnoli, L. G. (1982). Myocardial carnitine deficiency in acute myocardial infarction. Lancet, 1, 113Google Scholar
  131. Suzuky, Y. (1982). Myocardial carnitine deficiency in chronic heart failure. Lancet, 1Google Scholar
  132. Tada, M., Tamamoto, T. and Tonomura, Y. (1977). Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol. Rev., 1, 58–64Google Scholar
  133. Tones, M. A. and Poole-Wilson, P. A. (1985). Alpha-adrenoceptor stimulation, lysophos-phoglycerides, and lipid peroxidation in reoxygenation induced calcium uptake in rabbit myocardium. Cardiovasc. Res., 19, 228–236PubMedCrossRefGoogle Scholar
  134. Turner, J. F. and Boveris, A. (1980). Generation of superoxide anion by NADH dehy-drogenase of bovine heart mitochondria. Biochem. J., 1291, 421–430Google Scholar
  135. Vercesi, A., Reynafarje, B. and Lehninger, A. L. (1978). Stoichiometry of H+ ejection and Ca2+ uptake coupled to electron transport in rat heart mitochondria. J. Biol. Chem., 253, 6379–6385PubMedGoogle Scholar
  136. Vik-Mo, H., Riemersma, R. A., Mjøs, O. D. and Oliver, M. F. (1979). Effect of myocardial ischaemia and antilipolytic agents on lipolysis and fatty acid metabolism in the in situ dog heart. Scand. J. Clin. Lab. Invest., 39, 559–568PubMedCrossRefGoogle Scholar
  137. Weiss, S. J. and Lampert, M. B. (1983). Test ST: Long-lived oxidants generated by human neutrophils: characterisation and bioactivity. Science, 222, 625–628PubMedCrossRefGoogle Scholar
  138. Werns, S. W. (1990). Free radical scavengers and leukocyte inhibitors. In Topol, E. J. and Saunders, W. B. (Eds), Textbook of International Cardiology, PhiladelphiaGoogle Scholar
  139. Whitmer, J. T. (1987). L-Carnitine treatment improves cardiac performance and restores high-energy phosphate pools in cardiomyopathic syrian hamster. Circ. Res., 61, 396–408PubMedCrossRefGoogle Scholar
  140. Williams, A. J., Crie, J. S. and Ferrari, R. (1982). Factors influencing cardiac mitochondrial calcium transport and oxidative phosphorylation. In Caldarera, C. M. and Harris, P. (Eds), Advances in Studies on Heart Metabolism. Clueb Publication, Bologna, pp. 173–183Google Scholar
  141. Zweier, J. L., Flaherty, J. T. and Weisfeldt, M. L. (1987b). Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc. Natl Acad. Sci. USA, 84, 1404–1407PubMedPubMedCentralCrossRefGoogle Scholar
  142. Zweier, J. L., Rayburn, B. K., Flaherty, J. T. and Weisfeldt, M. L. (1987a). Recombinant superoxide dismutase reduces oxygen free radical concentrations in reperfusion. J. Clin. Invest., 80, 1728–1734PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1992

Authors and Affiliations

  • R. Ferrari

There are no affiliations available

Personalised recommendations