Advertisement

31P and 23Na NMR Spectroscopy Studies on the Calcium Paradox

  • T. J. C. Ruigrok
  • C. J. A. Van Echteld
Chapter
  • 5 Downloads

Abstract

Contractions of an isolated heart rapidly cease when calcium ions (Ca2+) are removed from the extracellular fluid (Ringer, 1883). Twenty-five years ago it was reported that Ca2+ repletion does not result in recovery of contraction of the heart, but in irreversible cell damage: the calcium paradox (Zimmerman and Hulsmann, 1966). Important features of the calcium paradox are disruption of the cell membrane (Post et al., 1985), accumulation of large amounts of Ca2+ by the cells (Alto and Dhalla, 1979), formation of contraction bands (Ganote and Nayler, 1985), massive release of intracellular constituents (Zimmerman and Hulsmann, 1966), and depletion of tissue ATP and creatine phosphate (CP) stores (Boink et al., 1976).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Alto, L. E. and Dhalla, N. S. (1979). Myocardial cation contents during induction of calcium paradox. Am. J. Physiol., 237, H713–H719PubMedGoogle Scholar
  2. Bhojani, I. H. and Chapman, R. A. (1990). The effects of bathing sodium ions upon the intracellular sodium activity in calcium-free media and the calcium paradox of isolated ferret ventricular muscle. J. Mot. Cell. Cardiol., 22, 507–522CrossRefGoogle Scholar
  3. Boink, A. B. T. J., Ruigrok, T. J. C., Maas, A. H. J. and Zimmerman, A. N. E. (1976). Changes in high-energy phosphate compounds of isolated rat hearts during Ca2+ -free perfusion and reperfusion with Ca2+. J. Mot. Cell. Cardiol., 8, 973–979CrossRefGoogle Scholar
  4. Brierley, G. P., Murer, E. and Bachmann, E. (1964). Studies on ion transport. III. The accumulation of calcium and inorganic phosphate by heart mitochondria. Arch. Biochem. Biophys., 105, 89–102PubMedCrossRefGoogle Scholar
  5. Busselen, P. (1987). Effects of sodium on the calcium paradox in rat hearts. Pfliigers Arch., 408, 458–464CrossRefGoogle Scholar
  6. Chapman, R. A. and Tunstall, J. (1987). The calcium paradox of the heart. Prog. Biophys. Mot. Biol., 50, 67–96CrossRefGoogle Scholar
  7. Ganote, C. E., Altschuld, R. A., Nayler, W. G. and Piper, H. M. (1991). What constitutes the calcium paradox? J. Mot. Cell. Cardiol., 23 (in press)Google Scholar
  8. Ganote, C. E. and Nayler, W. G. (1985). Contracture and the calcium paradox. J. Mot. Cell. Cardiol., 17, 733–745CrossRefGoogle Scholar
  9. Gevers, W. (1977). Generation of protons by metabolic processes in heart cells. J. Mot. Cell. Cardiol., 9, 867–874CrossRefGoogle Scholar
  10. Grinwald, P. M. and Nayler, W. G. (1981). Calcium entry in the calcium paradox. J. Mot. Cell. Cardiol., 13, 867–880CrossRefGoogle Scholar
  11. Guarnieri, T. (1988). Decrease in the transmembrane sodium activity gradient in ferret papillary muscle as a prerequisite to the calcium paradox. J. Clin. Invest., 81, 1938–1944PubMedPubMedCentralCrossRefGoogle Scholar
  12. Nayler, W. G., Perry, S. E., Elz, J. S. and Daly, M. J. (1984). Calcium, sodium, and the calcium paradox. Circ. Res., 55, 227–237PubMedCrossRefGoogle Scholar
  13. Piper, H. M., Spahr, R., Hiitter, J. F. and Spieckermann, P. G. (1985). The calcium and the oxygen paradox: non-existent on the cellular level. Basic Res. Cardiol., 80 (Suppl. 2), 159–163PubMedGoogle Scholar
  14. Post, J. A., Nievelstein, P. F. E. M., Leunissen-Bijvelt, J., Verkleij, A. J. and Ruigrok, T. J. C. (1985). Sarcolemmal disruption during the calcium paradox. J. Mot. Cell. Cardiol., 17, 265–273CrossRefGoogle Scholar
  15. Ringer, S. (1883). A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J. Physiol., 4, 29–42PubMedPubMedCentralCrossRefGoogle Scholar
  16. Ruaño-Arroyo, G., Gerstenblith, G. and Lakatta, E. G. (1984). ‘Calcium paradox’ in the heart is modulated by cell sodium during the calcium-free period. J. Mot. Cell. Cardiol., 16, 783–793CrossRefGoogle Scholar
  17. Ruigrok, T. J. C. (1990). Is an increase of intracellular Na2+ during Ca2+ depletion essential for the occurrence of the calcium paradox? J. Mot. Cell. Cardiol., 22, 499–501CrossRefGoogle Scholar
  18. Ruigrok, T. J. C., Boink, A. B. T. J., Spies, F., Blok, F. J., Maas, A. H. J. and Zimmerman, A. N. E. (1978). Energy dependence of the calcium paradox. J. Mot. Cell. Cardiol., 10, 991–1002CrossRefGoogle Scholar
  19. Ruigrok, T. J. C., Kirkels, J. H., Van Echteld, C. J. A., Borst, C. and Meijler, F. L. (1987). 31P NMR study of intracellular pH during the calcium paradox. J. Mot. Cell. Cardiol., 19, 135–139CrossRefGoogle Scholar
  20. Uemura, S., Young, H., Matsuoka, S. and Jarmakani, J. M. (1985). Low sodium attenuation of the Ca2+ paradox in the newborn rabbit myocardium. Am. J. Physiol., 248, H345–H349PubMedGoogle Scholar
  21. Van Echteld, C. J. A., Kirkels, J. H., Eijgelshoven, M. H. J., Van der Meer, P. and Ruigrok, T. J. C. (1991). Intracellular sodium during ischemia and calcium-free perfusion: a 23Na NMR study. J. Mot. Cell. Cardiol., 23, 297–307CrossRefGoogle Scholar
  22. Zimmerman, A. N. E. and Hulsmann, W. C. (1966). Paradoxical influence of calcium ions on the permeability of the cell membranes of the isolated rat heart. Nature, 211, 646–647PubMedCrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1992

Authors and Affiliations

  • T. J. C. Ruigrok
  • C. J. A. Van Echteld

There are no affiliations available

Personalised recommendations