Advertisement

Lethal Reperfusion Injury: Fact or Fancy?

  • Robert B. Jennings
  • Keith A. Reimer
Chapter

Abstract

The sudden onset of severe ischaemia in previously healthy myocytes sets into motion a series of events that continue until the myocytes die. These changes begin seconds after the vessel is occluded and occur because the supply of 02 is insufficient to support oxidative phosphorylation. Within 8–10 s, the myocardium converts to anaerobic glycolysis (AG) as its only source of new high-energy phosphate (˜P). Because the demand of the ischaemic tissue for ˜P exceeds the supply provided by the reserve supplies of ˜P, and by anaerobic glycolysis, net myocardial adenosine triphosphate (ATP) decreases rapidly (Figure 2.1). Simultaneously, as a result of the marked reduction in arterial flow, tissue pH decreases as large quantities of lactate and other glycolytic intermediates accumulate in the tissue. By the time 40 min of severe ischaemia has passed, little ATP remains (Figure 2.1), and the tissue contains a large osmotic load of lactate, alpha glycerol phosphate (aGP), creatine, phosphate (Pi), H+, etc. (Figure 2.2).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Bolli, R., Patel, B. S., Jeroudi, M. O., Lai, E. K. and McCay, P. B. (1988). Demonstration of free radical generation in ‘stunned’ myocardium of intact dogs with the use of the spin trap alpha-phenyl N-tertiary butyl nitrone. J. Clin. Invest., 82, 476–485PubMedPubMedCentralCrossRefGoogle Scholar
  2. Elz, J. S., Panagiotopoulos, S. and Nayler, W. G. (1989). Reperfusion-induced calcium gain after ischemia. Am. J. Cardiol., 63, 7E-13EPubMedCrossRefGoogle Scholar
  3. Ferrari, R., Ceconi, C. and Curello, S. (1986). Oxygen-mediated myocardial damage during ischaemia and reperfusion: role of cellular defences against oxygen toxicity. J. Mol. Cell Cardiol., 17, 937–945CrossRefGoogle Scholar
  4. Follette, D. M., Fey, K., Buckberg, G. D., Helly, J. J., Jr., Steed, D. L., Follis, R. P. and Maloney, J. V., Jr. (1981). Reducing postischemic damage by temporary modification of reperfusate calcium, potassium, pH, and osmolarity. J. Thorac. Cardiovasc. Surg., 82, 221–238PubMedGoogle Scholar
  5. Fujiwara, H., Ashraf, M., Sato, S. and Millard, R. W. (1982). Transmural cellular damage and blood flow distribution in early ischemia in pig hearts. Circ. Res., 51, 683–693PubMedCrossRefGoogle Scholar
  6. Ganote, C. E. (1983). Contraction band necrosis and irreversible myocardial injury [Editorial]. J. Mol. Cell. Cardiol., 15, 67–73PubMedCrossRefGoogle Scholar
  7. Herdson, P. B., Sommers, H. M. and Jennings, R. B. (1965). A comparative study of the fine structure of normal and ischemic dog myocardium with special reference to early changes following temporary occlusion of a coronary artery. Am. J. Pathol., 46, 367–386PubMedPubMedCentralGoogle Scholar
  8. Humphrey, S. M., Thomson, R. W. and Gavin, J. B. (1981). The effect of an isovolumic left ventricle on the coronary vascular competence during reflow after global ischemia in the rat heart. Circ. Res., 49, 784–791PubMedCrossRefGoogle Scholar
  9. Jennings, R. B. and Ganote, C. E. (1974). Structural changes in myocardium during acute ischemia. Circ. Res., 35 (Suppl.), III-156-III-172PubMedGoogle Scholar
  10. Jennings, R. B. and Ganote, C. E. (1976). Mitochondrial structure and function in acute myocardial ischemic injury. Circ. Res., 38 (Suppl.), I-80-I-91Google Scholar
  11. Jennings, R. B. and Hawkins, H. K. (1980). Ultrastructural changes of acute myocardial ischemia. In Wildenthal, K. (Ed.), Degradative Processes in Heart and Skeletal Muscle. Elsevier, Amsterdam/New York, pp. 295–344Google Scholar
  12. Jennings, R. B., Murry, C. E., Steenbergen, C., Jr., and Reimer, K. A. (1989). The acute phase of regional ischemia. In Cox, R. H. (Ed.), Acute Myocardial Infarction: Emerging Concepts of Pathogenesis and Treatment. Praeger Scientific, New York, pp. 67–84Google Scholar
  13. Jennings, R. B., Murry, C. E., Steenbergen, C., Jr., and Reimer, K. A. (1990). Development of cell injury in sustained acute ischemia. Circulation, 82 (Suppl.), II-2-II-12Google Scholar
  14. Jennings, R. B. and Reimer, K. A. (1975). Ischemic tissue injury. Am. J. Pathol., 81, 179–198PubMedPubMedCentralGoogle Scholar
  15. Jennings, R. B. and Reimer, K. A. (1983). Factors involved in salvaging ischemic myocardium: effect of reperfusion of arterial blood. Circ. Res., 68 (Suppl.), 1-25-1-36Google Scholar
  16. Jennings, R. B., Reimer, K. A. and Steenbergen, C., Jr. (1985a). Myocardial ischemia and reperfusion: Role of calcium. In Parratt, J. R. (Ed.), Control and Manipulation of Calcium Movement. Raven Press, New York, pp. 273–302Google Scholar
  17. Jennings, R. B., Reimer, K. A. and Steenbergen, C., Jr. (1986). Myocardial ischemia revisited. The osmolar load, membrane damage, and reperfusion [Editorial]. J. Mol. Cell. Cardiol., 18, 769–780PubMedCrossRefGoogle Scholar
  18. Jennings, R. B., Schaper, J., Hill, M. L., Steenbergen, C., Jr., and Reimer, K. A. (1985b). Effect of reperfusion late in the phase of reversible ischemic injury. Changes in cell volume, electrolytes, metabolites, and ultrastructure, Circ. Res., 56, 262–278PubMedCrossRefGoogle Scholar
  19. Jennings, R. B., Shen, A. C., Hill, M. L., Ganote, C. E. and Herdson, P. B. (1978). Mitochondrial matrix densities in myocardial ischemia and autolysis. Exp. Mol. Pathol., 29, 55–65PubMedCrossRefGoogle Scholar
  20. Jennings, R. B., Sommers, H., Smyth, G. A., Flack, H. A. and Linn, H. (1960). Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch. Pathol. Lab. Med., 70, 68–78Google Scholar
  21. Kinsman, J. M., Murry, C. E., Richard, V. J., Jennings, R. B. and Reimer, K. A. (1988). The xanthine oxidase inhibitor oxypurinol does not limit infarct size in a canine model of 40 minutes of ischemia with reperfusion. J. Am. Coll. Cardiol., 12, 209–217PubMedCrossRefGoogle Scholar
  22. Kloner, R. A., Ganote, C. E. and Jennings, R. B. (1974). The ‘no-reflow’ phenomenon after temporary coronary occlusion in the dog. J. Clin. Invest., 54, 1496–1508PubMedPubMedCentralCrossRefGoogle Scholar
  23. Marban, E., Kitakaze, M., Chacko, V. P. and Pike, M. M. (1988). Ca2+ transients in perfused hearts revealed by gated 19F NMR spectroscopy. Circ. Res., 63, 673–678PubMedCrossRefGoogle Scholar
  24. Murry, C. E., Richard, V. J., Reimer, K. A. and Jennings, R. B. (1990). Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during sustained ischemia. Circ. Res., 66, 913–931PubMedCrossRefGoogle Scholar
  25. Nayler, W. G. and Elz, J. S. (1986). Reperfusion injury: Laboratory artifact or clinical dilemma? Circulation, 74, 215–221PubMedCrossRefGoogle Scholar
  26. Reimer, K. A. and Jennings, R. B. (1979). The ‘Wavefront Phenomenon’ of myocardial ischemic cell. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab. Invest., 40, 633–644PubMedGoogle Scholar
  27. Reimer, K. A. and Jennings, R. B. (1988). Reperfusion injury. In Schettler, G., Jennings, R. B., Rapaport, E., Wenger, N. K. and Bernhardt, R. (Eds), Reperfusion and Revascularization in Acute Myocardial Infarction. Springer, Berlin/Heidelberg, pp. 52–55CrossRefGoogle Scholar
  28. Reimer, K. A., Murry, C. E. and Richard, V. J. (1989). The role of neutrophils and free radicals in the ischemic-reperfused heart; why the confusion and controversy? J. Mol. Cell. Cardiol., 21, 1225–1239PubMedCrossRefGoogle Scholar
  29. Reimer, K. A., Tanaka, M., Murry, C. E., Richard, V. J. and Jennings, R. B. (1991). Evaluation of free radical injury in myocardium. Toxicol. Pathol. (in press)Google Scholar
  30. Richard, V., Murry, C. E., Jennings, R. B. and Reimer, K. A. (1988). Therapy to reduce free radicals during early reperfusion does not limit the size of myocardial infarcts caused by 90 minutes of ischemia in dogs. Circulation, 78, 473–480PubMedCrossRefGoogle Scholar
  31. Richard, V., Murry, C. E., Jennings, R. B. and Reimer, K. A. (1990). Oxygen-derived free radicals and postischemic myocardial reperfusion: Pharmacological implications. Fund. Clin. Pharmacol., 4, 85–103CrossRefGoogle Scholar
  32. Schaper, W. (1984). Experimental infarcts and the microcirculation. In Hearse, D. and Yellon, D. (Eds), Therapeutic Approaches to Myocardial Infarct Size Limitation, Raven Press, New York, pp. 79–90Google Scholar
  33. Shen, A. C. and Jennings, R. B. (1972a). Myocardial calcium and magnesium in acute ischemic injury. Am. J. Pathol., 67, 417–440PubMedPubMedCentralGoogle Scholar
  34. Shen, A. C. and Jennings, R. B. (1972b). Kinetics of calcium accumulation in acute myocardial ischemic injury. Am. J. Pathol., 67, 441–452PubMedPubMedCentralGoogle Scholar
  35. Steenbergen, C., Jr., Hill, M. L. and Jennings, R. B. (1987a). Cytoskeletal damage during myocardial ischemia. Circ. Res., 60, 478–486PubMedCrossRefGoogle Scholar
  36. Steenbergen, C., Jr., Murphy, E., Levy, L. and London, R. E. (1987b). Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ. Res., 60, 700–707PubMedCrossRefGoogle Scholar
  37. Tanaka, M., Stoler, R. B., FitzHarris, G. P., Jennings, R. B. and Reimer, K. A. (1990). Evidence against the ‘early protection-delayed death’ hypothesis of superoxide dismutase (SOD) therapy in experimental myocardial infarction: PEG-SOD plus catalase do not limit myocardial infarct size in dog. Circ. Res., 67, 636–644PubMedCrossRefGoogle Scholar
  38. Tani, M. and Neely, J. R. (1989). Role of intracellular Na+ and Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts: Possible involvement of H+/Na+ and Na+/Ca2+ exchange. Circ. Res., 65, 1045–1056PubMedCrossRefGoogle Scholar
  39. Tani, M. and Neely, J. R. (1990). Mechanisms of reduced reperfusion injury by low Ca2+ and/or high K+. Am. J. Physiol., 258, H1025-H1031PubMedGoogle Scholar
  40. Whalen, D. A., Jr., Hamilton, D. G., Ganote, C. E. and Jennings, R. B. (1974). Effect of a transient period of ischemia on myocardial cells. I. Effects on cell volume regulation. Am. J. Pathol., 74, 381–398PubMedPubMedCentralGoogle Scholar
  41. Zweier, J. L., Flaherty, J. T. and Weisfeldt, M. L. (1987). Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc. Natl Acad. Sci. USA, 84, 404–1407CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1992

Authors and Affiliations

  • Robert B. Jennings
  • Keith A. Reimer

There are no affiliations available

Personalised recommendations