Advertisement

Platelet-derived Substances in Acute Myocardial Injury

  • Cherry L. Wainwright
  • James R. Parratt
Chapter
  • 6 Downloads

Abstract

The use of the term ‘current of injury’ may give rise to some misunder-standing. In classical studies on cardiac electrophysiology, part of the heart was deliberately injured by, e.g. locally applying heat, mechanical injury or chemical irritants, and recordings were made between an electrode placed on the injured part and one on the intact cardiac surface (Burdon-Sanderson and Page, 1879). Because of the potential difference between the injured part (equivalent to the intracellular compartment) and the intact surface (the extracellular space), a ‘current of injury’ would flow through a resistor connecting both parts. The effect on the recorded action potential was described by Burdon-Sanderson and Page as follows: ‘… if either of the leading-off contacts is injured … the initial phase is followed by an electrical condition in which the injured surface is more positive, or less negative relatively to the uninjured surface consequently the equilibrium which normally exists between all parts of the surface during the “isoelectric interval” is destroyed.’ In other words, instead of an extracellular electrogram, characterized by a QRS complex, an isoelectric ST segment and a T wave, one would record a ‘monophasic’ potential resembling a transmembrane action potential as recorded with a microelec-trode. In the early part of this century, recordings of such ‘injury potentials’ or ‘monophasic potentials’ yielded a great many data on cardiac electrophysiology (see, for example, Schutz, 1931).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Annable, C. R., McManus, L. M., Carey, K. D. and Pinkard, R. N. (1985). Isolation of platelet-activating factor (PAF) from ischaemic baboon myocardium. Fed. Proc., 44, 1271Google Scholar
  2. Bhat, A. V., Sasks, H., Osborne, J. A. and Lefer, A. M. (1989). Protective effect of the thromboxane receptor antagonist BM 13,505, in reperfusion injury following acute myocardial ischaemia in cats. Am. Heart J., 117, 799–803PubMedCrossRefGoogle Scholar
  3. Brezinski, M. E., Osborne, J. A., Yanagisawa, A. and Lefer, A. M. (1987). Beneficial actions of the thromboxane receptor antagonist, AH-23,848, in acute myocardial ischaemia. Meth. Find. Exp. Clin. Pharmacol., 9, 703–709Google Scholar
  4. Burke, S. E., DiCola, G. and Lefer, A. M. (1983a). Protection of ischaemic cat myocardium by CGS-13080, a selective potent thromboxane A2 synthetase inhibitor. J. Cardiovasc. Pharmacol., 5, 842–847PubMedCrossRefGoogle Scholar
  5. Burke, S. E., Lefer, D. J. and Lefer, A. M. (1983b). Cardioprotective actions of a selective thromboxane synthetase inhibitor in acute myocardial ischaemia. Arch. Int. Pharmacodyn., 265, 76–84PubMedGoogle Scholar
  6. Cazenave, J. P., Dejana, E., Kinlough-Rathbone, R. L., Richardson, M., Packham, M. A. and Mustard, J. F. (1989). Prostaglandins I2 and E1, reduce rabbit and human platelet adherence without inhibiting serotonin release from adherent platelets. Thromb. Res., 15, 273–279CrossRefGoogle Scholar
  7. Coker, S. J., Parratt, J. R., Ledingham, I. McA. and Zeitlin, I. J. (1981a). Thromboxane and prostacyclin release from ischaemic myocardium in relation to arrhythmias. Nature, 291,323–324PubMedCrossRefGoogle Scholar
  8. Coker, S. J., Ledingham, I. McA., Parratt, J. R. and Zeitlin, I. J. (1981b). Aspirin inhibits the early myocardial release of thromboxane B2 and ventricular ectopic activity following acute coronary artery occlusion in dogs. Br. J. Pharmac., 72, 593–595CrossRefGoogle Scholar
  9. Davies, M. J., Thomas, A. C., Knapman, P. A. and Hangartner, J. R. (1986). Intramyocardial platelet aggregation in patients with unstable angina suffering sudden ischaemic cardiac death. Circulation, 73, 418–427PubMedCrossRefGoogle Scholar
  10. El-Maraghi, N. and Genton, E. (1980). The relevance of platelet and fibrin thrombosis of the coronary microcirculation with special reference to sudden cardiac death. Circulation, 62, 936–944PubMedCrossRefGoogle Scholar
  11. Evers, A. S., Murphree, S., Saffitz, J. E., Jakshaki, B. A. and Needleman, P. (1985). Effects of endogenously produced leukotrienes, thromboxane and prostaglandins on coronary vascular resistance in rabbit myocardial infarction. J. Clin. Invest., 75, 992–999PubMedPubMedCentralCrossRefGoogle Scholar
  12. Farber, N. E. and Gross, G. J. (1990). Prostaglandin redirection by thromboxane synthetase inhibition-Attenuation of myocardial stunning in canine heart. Circulation, 81, 369–380PubMedCrossRefGoogle Scholar
  13. Flores, N. A. and Sheridan, D. J. (1990). Electrophysiological and arrhythmogenic effects of platelet activating factor during normal perfusion, myocardial ischaemia and reperfusion in the guinea-pig. Br. J. Pharmacol., 101, 734–738PubMedPubMedCentralCrossRefGoogle Scholar
  14. Fontalivan, F., Guillan, J. M., Koltai, M. and Braquet, P. (1989). Reduction of infarct size by ginkgolide B (BN 52021) in coronary artery ligated rats. In Braquet, P. (Ed.), Ginkgolides: Chemistry, Biology, Pharmacology and Clinical Perspectives, Vol. 2. J. R. Prous, Barcelona, pp. 405–411Google Scholar
  15. Grover, G. J. and Schumacher, W. A. (1988). Effects of the thromboxane receptor antagonist SQ29,548 on myocardial infarct size in dogs. J. Cardiovasc. Pharmac., 11, 29–35CrossRefGoogle Scholar
  16. Grover, G. J. and Schumacher, W. A. (1989). Effect of the thromboxane A2 receptor antagonist SQ30,741 on ultimate myocardial infarct size, reperfusion injury and coronary flow reserve. J. Pharmacol. Exp. Ther., 248, 484–491PubMedGoogle Scholar
  17. Gross, G. J., Maruyama, M., Vercellotti, G. M., Jacob, H. S. and Christensen, P. (1989). Effect of the PAF antagonist, BN 52021, on myocardial infarct size in dogs. In Braquet, P. (Ed.), Ginkgolides: Chemistry, Biology, Pharmacology and Clinical Perspectives, Vol. 2. J. R. Prous, Barcelona, pp. 421–425Google Scholar
  18. Haerem, J. W. (1972). Platelet aggregates in intramyocardial vessels of patients dying suddenly and unexpectedly of coronary artery disease. Atherosclerosis, 15, 189–198CrossRefGoogle Scholar
  19. Hock, C. E. and Lefer, A. M. (1986). CGS-12970, a thromboxane synthetase inhibitor, limits ischaemic damage following coronary artery occlusion. Res. Comm. Chem. Pathol. Pharmacol., 52, 285–294Google Scholar
  20. Imamato, T., Terashita, Z., Tanaba, M., Nishikawa, K. and Hirata, M. (1986). Protective effect of a novel thromboxane synthetase inhibitor CV-1451, on myocardial damage due to coronary occlusion and reperfusion in the hearts of anaesthetized dogs. J. Cardiovasc. Pharmacol., 8, 832–839Google Scholar
  21. Ingermann-Wojenski, C., Silver, M. J., Smith, J. B. and Macarak, E. (1981). Bovine endothelial cells in culture produce thromboxane as well as prostacyclin. J. Clin. Invest., 67,1292–1296CrossRefGoogle Scholar
  22. Jugdutt, B. I., Hutchins, G. M., Bulkley, B.H., Pitt, B. and Becker, L. C. (1979). Effect of indomethacin on collateral blood flow and infarct size in the conscious dog. Circulation, 59, 734–743PubMedCrossRefGoogle Scholar
  23. Kahn, N. N., Mueller, H. S. and Sinha, A. K. (1990). Impaired prostaglandin-E1/I2 receptor activity of human blood platelets in acute ischaemic heart disease. Circ. Res., 66, 932–940PubMedCrossRefGoogle Scholar
  24. Kenzora, J. L., Perez, J. E., Bergmann, S. R. and Lange, L. G. (1984). Effects of acetylglyceryl ether of phosphorylcholine (platelet activating factor) on ventricular preload, afterload and contractility in dogs. J. Clin. Invest., 74, 1193–1203PubMedPubMedCentralCrossRefGoogle Scholar
  25. Koltai, M., Tosaki, A., Hosford, D. and Braquet, P. (1989). Gingkolide B protects isolated hearts against arrhythmias induced by ischaemia but not reperfusion. Eur. J. Pharmacol., (in press)Google Scholar
  26. Laws, K. H., Clanton, J. A., Starnes, V. A., Lupinetti, F. M., Collins, J. C., Oates, J. A. and Hammon, J. W. (1983). Kinetics and imaging of indium-111-labelled autologous platelets in experimental myocardial infarction. Circulation, 67, 110–116PubMedCrossRefGoogle Scholar
  27. Lepran, I. and Lefer, A. M. (1985). Ischaemia aggravating effects of platelet activating factor in acute myocardial ischaemia. Basic Res. Cardiol., 80, 135–141PubMedCrossRefGoogle Scholar
  28. Levi, R., Burke, J., Guo, Z. G., Hattori, Y., Hoppens, C., McManus, L., Hanahan, D. and Pinckard, R. (1984). Acetyl glyceryl ether phosphorylcholine (AGEPC). A putative mediator of cardiac anaphylaxis in the guinea-pig. Circ. Res., 54, 117–124PubMedGoogle Scholar
  29. Lewy, R. I., Smith, J. B., Silver, M. J., Saia, J. A., Walinsky, P. and Wienre, L. (1979). Detection of thromboxane B2 (TxB2) in peripheral blood of patients with Prinzmetals angina. Clin. Res., 27, 462AGoogle Scholar
  30. Lucchesi, B. R., Mickelsen, J. K., Homeister, J. W. and Jackson, C. L. (1987). Interaction of the formed elements of the blood with the coronary vasculature in vivo. Fed. Proc., 46, 63–72PubMedGoogle Scholar
  31. Mais, D. E., De Holl, D., Sightler, H. and Halushka, P. V. (1988). Different pharmacological activities for 13-aza pinane thromboxane A2 analogs in platelets and blood vessels. Eur. J. Pharmacol., 148, 309–315PubMedCrossRefGoogle Scholar
  32. Maruyama, M., Vercelotti, G., Jacob, H., Gross, G. and Christensen, C. (1989). Inhibition of platelet activating factor reduces myocardial infarct size. J. Mol. Cell. Cardiol., 21 (Suppl. II), S114Google Scholar
  33. Mehta, J., Nichols, W., Mehta, P. and Conti, C. R. (1982). Thromboxane and prostacyclin in systemic and coronary vascular beds following endoperoxide analogue infusion. Am. J. Cardiol., 49, 1014CrossRefGoogle Scholar
  34. Mehta, J. L., Nichols, W. W., Schofield, R., Donnelly, W. H. and Chanda, V. K. (1990). TxA2 inhibition and ischaemia-induced loss of myocardial function and reactive hyperemia. Am. J. Physiol., 258, H1402–H1408PubMedGoogle Scholar
  35. Mickelson, J. K., Simpson, P. J. and Lucchesi, B. R. (1988). Myocardial dysfunction and coronary vasoconstriction induced by platelet activating factor in the post-infarcted rabbit isolated heart. J. Mol. Cell. Cardiol., 20, 547–561PubMedCrossRefGoogle Scholar
  36. Montrucchio, G., Alloatti, G., De Detta, C., Luc, R., Saunders, R. N., Emanuelli, G. and Camussi, G. (1989). Release of platelet activating factor from ischaemic-reperfused rabbit heart. Am. J. Physiol., 256, H1236–H1246PubMedGoogle Scholar
  37. Montrucchio, G., Camussi, G., Tetta, C., Emanuelli, G., Orzan, F., Libero, L. and Brusca, A. (1986). Intravascular release of platelet activating factor during atrial pacing. Lancet, ii, 293Google Scholar
  38. Mullane, K. (1989). Neutrophil-platelet interactions and post-ischaemic myocardial injury. In Schror, K. and Sinzinger, H. (Eds), Prostaglandins in Clinical Research. Alan R. Liss, New York, pp. 39–51Google Scholar
  39. Mullane, K. M. and Fornabaio, D. (1988). Thromboxane synthetase inhibitors reduce infarct size by a platelet dependent, aspirin sensitive mechanism. Circ. Res., 62, 668–678PubMedCrossRefGoogle Scholar
  40. Mullane, K. M. and McGiff, J. C. (1985). Platelet depletion and infarct size in an occlusion-reperfusion model of myocardial ischaemia in anaesthetised dogs. J. Cardiovasc. Pharmacol., 7, 733–738PubMedCrossRefGoogle Scholar
  41. Mullane, K. M., Westlin, W. and Kraemer, R. (1988). Activated neutrophils release mediators that may contribute to myocardial injury and dysfunction associated with ischaemia and reperfusion. In Levi, R. and Krell, R. D. (Eds), Biology of the Leukotrienes. Ann. NYAcad. Sci., Vol. 524, pp. 103–121Google Scholar
  42. O'Flaherty, P., Wykle, J. T., Miller, R. L., Lewis, C. H., Waite, J. C., Bass, M. McCall, A. and De Chatelet, C. E. (1981). 1-0-alkyl-sn-glyceryl-3-phosphorylcholine: A novel class of neutrophil stimulation. Am. J. Pathol., 103, 70–79PubMedPubMedCentralGoogle Scholar
  43. Ogawa, T., Hieda, N., Sugiyama, S., Toki, Y., Ito, T., Ogawa, K., Satake, T. and Ozawa, T. (1988). Effect of a novel thromboxane A2 synthetase inhibitor on ischaemia-induced mitochondrial dysfunction in canine hearts. Arzneim, Forsch.lDrug Res., 38, 228–230Google Scholar
  44. Osborne, J. A. and Lefer, A. M. (1988). Cardioprotective actions of thromboxane receptor antagonism in ischaemic atherosclerotic rabbits. Am. J. Physiol., 255, H318–H324PubMedGoogle Scholar
  45. Parratt, J. R. and Wainwright, C. L. (1986). Ventricular arrhythmias induced by local injections of vasoconstrictors following coronary artery occlusion. Br. J. Pharmacol., 88, 397PGoogle Scholar
  46. Reilly, I. A. and Fitzgerald, G. A. (1987). Inhibition of thromboxane formation in vivo and ex vivo: implications for therapy with platelet inhibitory drugs. Blood, 69, 180–186PubMedGoogle Scholar
  47. Ruf, W., McNamara, H., Suehiro, A., Suehiro, A. and Wickline, S. (1980). Platelet trapping in myocardial infarct in baboons: Therapeutic effect of aspirin. Am. J. Cardiol., 46, 405–412PubMedCrossRefGoogle Scholar
  48. Saniabadi, A. R., Lowe, G. D. O., Madhok, R., Spowart, K., Shaw, B., Barbenel, J. C. and Forbes, C. D. (1986). A critical investigation into the existence of circulating platelet aggregates. Thromb. Haemostas., 56, 45–49Google Scholar
  49. Schror, K. (1990). Thromboxane A2 and platelets as mediators of coronary arterial vasoconstriction in myocardial ischaemia. Eur. Heart J., 11 (Suppl. B), 27–34PubMedCrossRefGoogle Scholar
  50. Schumacher, W. A., and Grover, G. J. (1990). The thromboxane receptor antagonist SQ-30,471 reduces myocardial infarct size in monkeys when given during reperfusion at a threshold dose for improving reflow during thrombolysis. J. Am. Coll. Cardiol., 15, 790–800CrossRefGoogle Scholar
  51. Schumacher, W. A., Heran, C. L., Goldenberg, H. J., Harris, D. N. and Ogletree, M. J. (1989). Magnitude of thromboxane receptor antagonism necessary for antithrombotic activity in monkeys. Am. J. Physiol., 256, H726–H734PubMedGoogle Scholar
  52. Shaw, J. O., Pinchard, R. N., Ferrigni, K. S., McManus, L. M. and Hanahan, D. J. (1981). Activation of human neutrophils with 1-0-alkyl-sn-glyceryl-3-phosphorylcholine (platelet activating factor). J. Immunol., 127, 1250–1255PubMedGoogle Scholar
  53. Sipka, S., Dinya, Z., Koltai, M., Bojan, F., Kovacs, A. and Szegedi, G. (1989). Inhibition of neutrophil capillary migration by platelet activating factor. In Braquet, P. (Ed.), Ginkgolides: Chemistry, Biology, Pharmacology and Clinical Perspectives, Vol. 2. J. R. Prous, Barcelona, pp. 97–103Google Scholar
  54. Sisson, J. H., Prescott, S. M., McIntyre, T. M. and Zimmerman, G. A. (1987). Production of platelet activating factor by stimulated human polymorphonuclear leukocytes. J. Immunol., 138, 3918–3926PubMedGoogle Scholar
  55. Smith, E. F., Griswold, D. E., Egan, J. W., Hillegass, L. M. and Dimartino, M. J. (1989). Reduction of myocardial damage and polymorphonuclear leukocyte accumulation following coronary artery occlusion and reperfusion by the thromboxane receptor antagonist BM 13,505. J. Cardiovasc. Pharmacol., 13, 715–722PubMedCrossRefGoogle Scholar
  56. Smith, E. F., Lefer, A. M. and Nicolau, K. C. (1981). Mechanism of coronary vasoconstriction by carbocyclic thromboxane A2. Am. J. Physiol., 240, H493–H497PubMedGoogle Scholar
  57. Smith, E. F., Rucker, W. and SchrOr, K. (1983). RCS from human platelets: is it only thromboxane? Eur. J. Pharmacol., 95, 121–124PubMedCrossRefGoogle Scholar
  58. Spagnuolo, P. J., Ellner, J. J., Hassid, A. and Dunn, M. J. (1980). Thromboxane A2 mediates augmented polymorphonuclear leukocyte adhesiveness. J. Clin. Invest., 66, 406–414PubMedPubMedCentralCrossRefGoogle Scholar
  59. Stahl, G. L., Terashita, Z.-I. and Lefer, A. M. (1988). Role of platelet activating factor (PAF) in the propagation of myocardial ischaemic damage in the rat. J. Pharm. Exp. Ther., 244, 898–904Google Scholar
  60. Swayne, G. T. G., Maguire, J., Dolan, J., Raval, P., Dane, G., Greener, M. and Owen, D. A. A. (1988). Evidence for heterogeneity of thromboxane A2 receptor using structurally different antagonists. Eur. J. Pharmacol., 152, 311–319PubMedCrossRefGoogle Scholar
  61. Thievant, P., Guillan, J. M. and Koltai, M. (1989). Effect of ginkgolide B (BN52021) on ischaemia-reperfusion-induced arrhythmias in mongrel dogs. In Braquet, P. (Ed.) Ginkgolides: Chemistry, Biology, Pharmacology and Clinical Perspectives, Vol. 2. J. R. Prous, Barcelona, pp. 413–420Google Scholar
  62. Trip, M. D., Cats, V. M., Vancapelle, F. J. L. and Vreeken, J. (1990). Platelet hyperreactivity and prognosis in survivors of myocardial infarction. New Engl. J. Med., 322, 1549–1554PubMedCrossRefGoogle Scholar
  63. Wahler, G. M., Coyle, D. E. and Sperelakis, N. (1990). Effects of platelet activating factor on single potassium channel currents in guinea-pig ventricular myocytes. Mol. Cell. Biochem., 93, 69–76PubMedCrossRefGoogle Scholar
  64. Wainwright, C. L., Parratt, J. R. and Bigaud, M. (1989a). The effects of PAF antagonists on arrhythmias and platelets during acute myocardial ischaemia and reperfusion. Eur. Heart J., 10, 235–243PubMedGoogle Scholar
  65. Wainwright, C. L., Parratt, J. R., Bigaud, M., Tweddel, A. and Martin, W. (1989b). Platelet, blood flow and electrocardiographic changes during acute myocardial ischaemia. J. Mol. Cell. Cardiol., 21 (Suppl. II), S113CrossRefGoogle Scholar
  66. Wargovich, T. J., Mehta, J., Nichols, W. W., Ward, M. B., Lawson, D., Franzini, D. and Conti, C. R. (1987). Reduction in myocardial neutrophil accumulation and infarct size following administration of thromboxane inhibitor U-63,557A. Am. Heart J., 114, 1078–1085PubMedCrossRefGoogle Scholar
  67. Zahavi, J., Zahavi, J., Schafer, R., Firsteter, E. and Laniado, S. (1989). Abnormal typical pattern of platelet function and thromboxane generation in unstable angina. Thromb. Haemostas., 62, 840–845Google Scholar

Copyright information

© Macmillan Publishers Limited 1992

Authors and Affiliations

  • Cherry L. Wainwright
  • James R. Parratt

There are no affiliations available

Personalised recommendations