• Hans-Joachim Waschkies
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 240)


The question of the origins of Greek mathematics has always been considered to be an extremely difficult one. The amazing achievements of ancient Greek mathematicians have been passed down to us almost exclusively via the works of authors such as Autolycus, Archimedes, Euclid, Apollonius, Theodosius, Menelaus, Diophantus, and Pappus, the earliest of whom wrote in the second half of the 4th century BC. Additionally Aristotle’s philosophy of science as put forward in his Analytica posteriora, which was written slightly earlier, shows that at his time mathematical proofs were performed according to methods already close to those applied by Euclid. This is strong evidence that there had been a considerable period before the middle of the 4th century BC during which mathematics had been developed by the Greeks, from their very beginnings, to the state of perfection to which the classical works mentioned testify. But, as has been a continual source of regret ever since, there is an almost total lack of sources concerning the early phases of this process. Moreover Theophrastus of Ephesus and Eudemus of Rhodes seem not to have fared much better when they wrote histories of mathematics in the second half of the 4th century BC. Both have been lost (Waschkies, 1998, p. 368), but the work of Eudemus has left some traces in later works. Proclus refers to it repeatedly, and therefore his so called Survey, which outlines the history of Greek mathematics from its beginnings up to Euclid (Proclus, 1873, pp. 64–68), is often supposed to be from Eudemus, although Proclus does not refer to him by name there. This Survey served as a guide when the exploration of the history of Greek mathematics took a fresh start in 1870 with Carl Anton Bretschneider’s Geometrie und die Geometer vor Eukleides. As it has been customary it seems appropriate to start by quoting some lines from the Survey which refer to the very beginnings of Greek mathematics:

We say, as have most writers of history, that geometry was first discovered among the Egyptians and originated in the remeasuring of their lands. This was necessary for them because the Nile overflows and obliterates the boundary lines between their properties. It is not surprising that the discovery of this and the other sciences had its origin in the necessity, since every thing in the world of generation proceeds from imperfection to perfection. Thus they would naturally pass from sense — perception to calculation and from calculation to reason. Just as among the Phoenicians the necessities of trade and exchange gave the impetus to the accurate study of number, so also among the Egyptians the invention of geometry came about from the cause mentioned.

Thales, who had traveled to Egypt, was the first to introduce this science to Greece. He made many discoveries himself and taught the principles for many others to his successors, attacking some problems in a general way and others more empirically (Proclus, 1970, pp. 51–52).


Mathematical Knowledge Greek Mathematic General Premise Auxiliary Construction Clay Tablet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aristotele: Prior and posterior analytics. A revised text with introduction and commentary by W. D. Ross. Reprinted lithographically from corrected sheets of the first edition. Oxford, 1965 [1949].Google Scholar
  2. Aristotele: Metaphysics, vol. I-II. A revised text with introduction and commentary by W.D. Ross. Reprinted lithographically from corrected sheets of the first edition. Oxford, 1966 [1924].Google Scholar
  3. Asper, Markus: “Stoicheia und Gesetze. Spekulationen zur Entstehung mathematischer Textformen in Griechenland”. Althoff, Jochen, Bernhard Herzhoff und Georg Wöhrle (Herausgeber): Antike Naturwissenschaft und ihre Rezeption. Bd. XI. Trier, 2001, pp. 73–106.Google Scholar
  4. Becker, Oskar: “Die Lehre vom Geraden und Ungeraden im Neunten Buch der Euklidischen Elemente. (Versuch einer Wiederherstellung in der ursprünglichen Gestalt)”, Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abt. B: Studien, Bd. 3 (1936), pp. 533–553.Google Scholar
  5. Becker, Oskar: “Frühgriechische Mathematik und Musiklehre”, Archiv für Musikwissenschaft, Bd. 14 (1957), pp. 156–164.Google Scholar
  6. Bretschneider, Carl Anton: Geometrie und die Geometer vor Euklides. Ein historischer Versuch. Leipzig, 1870.Google Scholar
  7. Bruins, Evert Marie: “On the system of Babylonian geometry”, Sumer, vol. 11 (1955), pp. 44–49.Google Scholar
  8. Bruins, Evert Marie and Rutten, Marguerite: Textes mathématiques de Suse [Mémoires de la Mission Archéologique en Iran, t. 34]. Paris, 1961.Google Scholar
  9. Burkert, Walter: Weisheit und Wissenschaft. Studien zu Pythagoras, Philolaos und Platon. Nürnberg, 1962. [English edition (revised): Lore and science in ancient Pythagoreanism. Translated by E.L. Minar jr. Cambridge (Mass.), 1972.]Google Scholar
  10. Dicks, D.R.: “Thales”, The Classical Quarterly, vol. 53 (1959), pp. 294–309.Google Scholar
  11. Diogenes Laertios: Vitae philosophorum, t. I-II. Recognovit brevique adnotatione critica instruxit H.S. Long. Oxford, 1966 (first edition 1964).Google Scholar
  12. Euclid: The thirteen books of Euclid’s Elements, vol. I-III. Translated with introduction and commentary by Sir Thomas Little Heath. Cambridge, 1926 [first edition 1908].Google Scholar
  13. von Fritz, Kurt: “Die APXAI in der griechischen Mathematik”, Archiv für Begriffsgeschichte, Bd. 1 (1955), pp. 13–103.Google Scholar
  14. Hero Alexandrinus: Opera quae supersunt omnia, vol. III: Rationes dimetiendi et commentatio dioptrica–Vermessungslehre und Dioptra. Griechisch und deutsch herausgegeben von Hermann Schoene. Leipzig, 1903 (reprint edition 1976).Google Scholar
  15. Herodotus: Historiarum libri IX. Edidit Heinrich Rudolph Dietsch. Editio altera curavit H. Kallenberg. Vol. I-II. Leipzig, 1899–1901 [Editio stereotypa, 21885]Google Scholar
  16. Høyrup, Jens: Lengths–widths–surfaces. A portrait of Old Babylonian algebra and its kin. New York/Berlin/Heidelberg, 2002.Google Scholar
  17. Iamblichus: De vita Pythagorica liber. Edidit L. Deubner. Stuttgart, 1975 [first edition, Leipzig 1937].Google Scholar
  18. King, Leonard William: Cuneiform texts from Babylonian tablets in the British Museum, vol. IX. London, 1962 [first edition 1900 ].Google Scholar
  19. Knorr, Wilbur Richard: “On the early history of axiomatics. The interaction of mathematics and philosophy in Greek antiquity”. In Hintikka, Jaakko, David Gruender and Evandro Agazzi (Eds.): Proceedings of the 1978 Pisa Conference on the History and Philosophy of Science, vol. I: Theory change, ancient axiomatics, and Galileo ‘s methodology. Dordrecht/Boston/London, 1981, pp. 145–186.Google Scholar
  20. Kuhn, Thomas S.: The structure of scientific revolutions. Chicago, 1962 [21 970 (with a postscript)]. Lambert, Johann Heinrich, Thomas S.: The structure of scientific revolutions. Chicago, 1962 [21 970 (with a postscript)]. Lambert, Johann Heinrich: “Vorläufige Kenntnisse für die, so die Quadratur und Rectification des Circuls suchen”. In Lambert, J.H.: Beyträge zum Gebrauche der Mathematik und deren Anwendung. Teil II. 1, 5. Abhandlung, pp. 140–169. Berlin, 1770.Google Scholar
  21. Lindemann, Ferdinand: “Über die Zahl 7”, Mathematische Annalen, Bd. 20 (1882), pp. 213–225.Google Scholar
  22. Loria, Gino: Le scienze esatte nell’antica Grecia, vol. I-V. Modena, 1893–1902.Google Scholar
  23. Mittelstraß, Jürgen: “Die Entdeckung der Möglichkeit von Wissenschaft”, Archive for History of Exact Sciences, vol. 2 (1962–66), pp. 410–435.Google Scholar
  24. Mueller, Ian: “Euclid’s ‘Elements’ and the axiomatic method”, British Journal for the Philosophy of Science, vol. 20 (1969), pp. 289–309.Google Scholar
  25. Netz, Reviel: The shaping of deduction in Greek mathematics. A study in cognitive history. Cambridge/New York/Melbourne, 1999.Google Scholar
  26. Neugebauer, Otto and W. [Vasilij Vasil’evicˇ] Struve: “Über die Geometrie des Kreises in Babylonien”, Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abt. B: Studien, Bd. 1 (1931), pp. 81–92.Google Scholar
  27. Neugebauer, Otto: Mathematische Keilschrift–Texte, Bd. I-III. Berlin/New York/Heidelberg, 1973 (first edition 1935–1937).Google Scholar
  28. Neugebauer, Otto and Sachs, Abraham: Mathematical cuneiform texts. With a chapter “The Akkadian dialects of the Old Babylonian mathematical texts” by A. Goetze. New Haven (Connecticut), 1945. Plato: Opera. Recognovit brevique adnotatione critica instruxit Ioannes Burnet. Vol. I: Eutyphro, Apologia Socratis, Crito, Phaedo, Cratylus, Theaetetus, Sophista, Politicus. Vol. II: Parmenides, Philebus, Symposium, Phaedrus, Alcibiades I, Alcibiades II, Hipparchus, Amatores. Oxford, 1899–1900.Google Scholar
  29. Proclus Diadochus: In primum Euclidis elementorum librum commentarii. Ex recognitione Godofredi Friedlein. Leipzig, 1873 [reproduction Hildesheim, 1967].Google Scholar
  30. Proclus Diadochus: A commentary on the first book of Euclid’s Elements. Translated with introduction and notes by Glenn R. Morrow. Princeton (New Jersey ), 1970.Google Scholar
  31. Rudio, Ferdinand: Der Bericht des Simplicius über die Quadraturen des Antiphon und des Hippokrates (griechisch und deutsch). Leipzig, 1907.Google Scholar
  32. Szabó, Árpád: “Wie ist die Mathematik zu einer deduktiven Wissenschaft geworden?”, Acta Antiqua Academiae Scientiarum Hungaricae, t. IV (1956), pp. 109–151.Google Scholar
  33. Szabó, Árpád: The beginnings of Greek mathematics. English translation by A.M. Ungar. Dordrecht and Boston, 1978 [first German edition 1969 ].Google Scholar
  34. Tannery, Paul: La gomtrie grecque, comment son histoire nous est parvenue et ce que nous en savons. I. Partie: Histoire gnrale del la gomtrie lmentaire. Paris, 1887 [2Paris (under the title Pour lhistoire de la science hellne. De Thals Empdocle), 1930].Google Scholar
  35. Thureau-Dangin, François: Textes mathématiques babyloniens. Transcrits et traduits par François Thureau-Dangin. Leiden, 1938.Google Scholar
  36. van der Waerden, Bartel Leendert: Science awakening. English translation by Arnold Dresden. Groningen, 1954 [first Dutch edition 1950 ].Google Scholar
  37. Waschkies, Hans-Joachim: Anfänge der Arithmetik im Alten Orient und bei den Griechen. Amsterdam, 1989.Google Scholar
  38. Waschkies, Hans-Joachim: “Mündliche, graphische und schriftliche Vermittlung von geometrischem Wissen im Alten Orient und bei den Griechen”. In Kullmann, Wolfgang and Jochen Althoff (Herausgeber): Vemittlung und Tradierung von Wissen in der griechischen Kultur. Tübingen, 1993, pp. 39–70.Google Scholar
  39. Waschkies, Hans-Joachim: “Mathematische Schriftsteller”. In Grundriss der Geschichte der Philosophie. Begründet von Friedrich Überweg. Völlig neubearbeitete Ausgabe. Redaktion Wolfgang Rother. Die Philosophie der Antike. Herausgegeben von Hellmut Flashar. Bd. II/1: Sophistik. Sokrates. Sokratik. Mathematik. Medizin. Basel, 1998, pp. 365–453.Google Scholar
  40. Waschkies, Hans-Joachim: “Indizien zur Datierung der geometrischen Termini ariy,tth und a~,teiov als Bezeichnungen für den ‘Punkt im allgemeinen’ auf die Zeit von Eudoxos und Aristoteles”. Althoff, Jochen, Bernhard Herzhoff und Georg Wöhrle (Herausgeber): Antike Naturwissenschaft und ihre Rezeption. Bd. X. Trier, 2000, pp. 43–81.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Hans-Joachim Waschkies
    • 1
  1. 1.University of KielGermany

Personalised recommendations