Techniques of Fractions in Ancient Egypt and Greece

  • Wilbur Knorr
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 240)


In this and several other such passages Greek writers acknowledged their debt to the ancient Egyptian arithmetical methods2. The reference here to “parts” (moria) is noteworthy, in that by using the standard term for proper measuring parts, or submultiples of the unit, the writer appears to allude to the manipulation of unit-fractions. A technique of precisely this sort dominates the computations with fractions found in the ancient Egyptian papyri—most notably, the Rhind Mathematical Papyrus—and despite the passage of over two millennia is still to be found in late Greek papyri from the Graeco-Roman and Byzantine periods. This is perhaps the most striking of several | evidences of the continuity of the Egyptian and Greek technical traditions, all the more impressive in view of the fact that the availability of the Mesopotamian sexagesimal mode, from at least the second century B.C. on, failed to displace the cumbersome and limited Egyptian mode, save in the context of astronomical computation3. Thus, despite the undeniable influence of Mesopotamian techniques, especially in the fields of elementary and metrical geometry and astronomy, our sources must be taken seriously when they affirm their debt to the Egyptian tradition4.


Computational Procedure Geometric Algebra Lead Term Partial Quotient Ancient EGYPT 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


I. Primary Sources

  1. Codex Constantinopolitanus, E. M. Bruins, ed., 3 vols, Leyden, 1964 (I: facsimile; II: Greek text; III: translation (English) and commentary).Google Scholar
  2. Hero of Alexandria, Opera, 5 vols, Leipzig (III, 1903: Metrica and Dioptra, H. Schöne, ed.; IV/V, 1912/1914: Geometrica/Stereometrica, J. L. Heiberg, ed.).Google Scholar
  3. Papyri in the University of Michigan Collection, J. G. Winter, ed., Vol. III, Ann Arbor, 1936 (P. Michigan 145, F. E. Robbins, ed., pp. 34–52; P. Michigan 146, F. E. Robbins, ed., pp. 52–59; on the latter, cf. also the same editor in Isis, 1922, 5, pp. 20–25).Google Scholar
  4. Le Papyrus mathématique d’Akhmîm, J. Baillet, ed., in Mémoires… de la Mission Archéologique française au Caire, Vol. 9, Fasc. 1, Paris, 1892.Google Scholar
  5. The Rhind Mathematical Papyrus (British Museum Nos. 10057, 10058), T. E. Peet, ed., London, 1923; A. B. Chace and H. P. Manning, eds., 2 vols., Oberlin, Ohio, 1927 (the latter with a “Bibliography of Egyptian Mathematics,” by R. C. Archibald).Google Scholar

II. Discussions

  1. Baillet, J. 1892. See Le Papyrus Akhmîm.Google Scholar
  2. Bruchheimer, M. and Salomon, Y. 1977: Some comments on R. J. Gillings’ analysis of the 2/n table in the Rhind Papyrus. Historia Mathematica, 4, 445–452.CrossRefGoogle Scholar
  3. Bruins, E. M. 1975. The part in ancient Egyptian mathematics. Centaurus 19, 241–251.CrossRefGoogle Scholar
  4. Gillings, R. J. 1972. Mathematics in the time of the Pharaohs. Cambridge, Mass.Google Scholar
  5. Bruins, E. M. 1978. Response to “Some comments.…,” Historia Mathematica 5, 221–227.CrossRefGoogle Scholar
  6. Heath, T. L. 1921. A history of Greek mathematics. 2 vols. Oxford.Google Scholar
  7. Hofmann, J. E. 1934. Über die Annäherung von Quadratwurzeln bei Archimedes und Heron. Jahresbericht der Deutschen Mathematiker-Vereinigung 43, 187–210. (Reprinted in O. Becker, ed., Zur Geschichte der griechischen Mathematik. Darmstadt, 1965.)Google Scholar
  8. Hultsch, F. 1901. Neue Beiträge zur ägyptischen Teilungsrechnung. Bibliotheca Mathematica 23, 177–184.Google Scholar
  9. Neugebauer, O. 1957. The exact sciences in antiquity. Providence, R.I.Google Scholar
  10. Parker, R. A. 1972. Demotic mathematical papyri. Providence, R.I.Google Scholar
  11. Robbins, F. E. 1922; 1936: see Papyri in the… Michigan Collection.Google Scholar
  12. Tannery, P. 1884. Questions héroniennes. Bulletin des sciences mathématiques 82 (= 19), 329–344, 359–376.Google Scholar
  13. Thomas, I. 1957. Selections illustrating the history of Greek mathematics. 2 vols. London/Cambridge, Mass. (Reprint of edition of 1939–1941.)Google Scholar
  14. van der Waerden, B. L. 1938. Die Entstehung der aegyptischen Bruchrechnung. Quellen und Studien B 4, 359–382.Google Scholar
  15. van der Waerden, B. L. 1954. Science awakening, Groningen (Reprinted, New York, 1963.)Google Scholar
  16. van der Waerden, B. L. 1980. The (2:n) table in the Rhind Papyrus. Centaurus 24, 259–274.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Wilbur Knorr

There are no affiliations available

Personalised recommendations