Advertisement

Evaluation of photosynthetic capacity in micropropagated plants by image analysis

  • Yasuomi Ibaraki
Chapter
  • 1.6k Downloads
Part of the Focus on Biotechnology book series (FOBI, volume 6)

Keywords

Chlorophyll Fluorescence Photosynthetic Capacity Photosynthetic Photon Flux Density Culture Vessel Chlorophyll Fluorescence Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kubota, C. (2001) Concepts and background of photoautotrophic micropropagation. In: Morohoshi, N. and Komamine, A. (Eds.) Molecular Breeding of Woody Plants. Elsevier Science B.V., Amsterdam; pp. 325-334.Google Scholar
  2. [2]
    Dubé, S.L. and Vidaver, W. (1992) Photosynthetic competence of plantlets grown in vitro. An automated system for measurement of photosynthesisin vitro. Physiol. Plant 84: 409-416.CrossRefGoogle Scholar
  3. [3]
    Kubota, C. and Kozai, T. (1992) Growth and net photosynthetic rate of Solanum tuberosum in vitrounder forced and natural ventilation. Hort. Sci. 27: 1312-1314.CrossRefGoogle Scholar
  4. [4]
    Capellades, M.; Lemeur, R. and Debergh, P. (1990) Effects of sucrose on starch accumulation and rate of photosynthesis in Rosa cultured in vitro. Plant Cell Tissue Org. Cult. 25: 21-26.CrossRefGoogle Scholar
  5. [5]
    Desjardins, Y.; Hdider, C. and de Riek, J. (1995) Carbon nutrition in vitro – regulation and manipulation of carbon assimilation in micropropagated systems. In: Aitken-Christie, J.; Kozai, T. And Smith, M.A.L. (Eds.) Automation and Environmental Control in Plant Tissue Cultures. Kluwer Academic Publishers, Dordrecht, The Netherlands; pp. 441-471.CrossRefGoogle Scholar
  6. [6]
    Ibaraki, Y. and Nozaki, Y. (2004) Estimation of light intensity distribution in a culture vessel. Plant Cell Tissue Org. Cult. (in press).Google Scholar
  7. [7]
    Oxborough, K. and Baker, N.R. (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of qp and Fv’/Fm’ without measuring Fo’. Photosynth. Res. 54: 135-142.CrossRefGoogle Scholar
  8. [8]
    Jones, H.G. (1990) Plants and microclimate. Cambridge University Press, New York.Google Scholar
  9. [9]
    Lichtenthaler, H.K.; Lang, M.; Sowinska, M.; Heisel, F. and Miehe, J.A. (1996) Detection of vegetation stress via a new high resolution fluorescence imaging system. J. Plant Physiol. 148: 599-612.CrossRefGoogle Scholar
  10. [10]
    Lichtenthaler, H.K.; Buschman, C.; Rinderle, U. and Schmuck, G. (1986) Application of chlorophyll fluorescence in eco-physiology. Radiat. Environ. Biophy. 25: 297.CrossRefGoogle Scholar
  11. [11]
    Morecroft, M.D.; Stokes, V.J. and Morison, J.I.L. (2003) Seasonal changes in the photosynthetic capacity of canopy oak (Quercus robur) leaves: the impact of slow development on annual carbon uptake. Int. J. Biometeorol. 47: 221-226.CrossRefGoogle Scholar
  12. [12]
    Fracheboud, Y.; Haldimann, P.; Leipner, J. and Stamp, P. (1999) Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea maysL.). J. Exp. Bot. 50: 1533-1540.CrossRefGoogle Scholar
  13. [13]
    Genty, B.; Briantais, J.M. and Baker, N.R. (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochemica Biophysica Acta 990: 87-92.CrossRefGoogle Scholar
  14. [14]
    Maxwell, K. and Johnson, G.N. (2000) Chlorophyll fluorescence – a practical guide. J. Exp. Bot. 51: 659-668.CrossRefGoogle Scholar
  15. [15]
    Lichtenthaler, H.K. and Rinderle, U. (1988) The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Critical Reviews in Analytical Chemistry 19: S29-S85.CrossRefGoogle Scholar
  16. [16]
    Aitken-Christie, J.; Davies, H.E.; Kubota, C. and Fujiwara, K. (1992) Effect of nutrient media composition on sugar-free growth and chlorophyll fluorescence of Pinus radiata shoots in vitro. Acta Hort. 319: 125-128.CrossRefGoogle Scholar
  17. [17]
    Hofman, P.; Haisel, D.; Komenda, J.; Vágner, M.; Tichá, I.; Schäfer, C. and Čapková, V. (2002) Impact of in vitro cultivation conditions on stress responses and on changes in thylakoid membrane proteins and pigments of tobacco during ex vitro acclimation. Biol. Plant. 45: 189-195.CrossRefGoogle Scholar
  18. [18]
    Serret, M.D.; Trillas, M.I. and Araus, J.L. (2001) The effect of in vitro culture conditions on the pattern of photoinhibition during acclimation of gardenia plantlets to ex vitro conditions. Photosynthetica 39: 67-73.CrossRefGoogle Scholar
  19. [19]
    Kato, M.C.; Hikosaka, K. and Hirose, T. (2002) Leaf discs floated on water are different from intact leaves in photosynthesis and photoinhibition. Photosynth. Res. 72: 65-70.CrossRefGoogle Scholar
  20. [20]
    Ibaraki, Y and Matsumura, K (2004) Non-destructive evaluation of the photosynthetic capacity of PSII in micropropagated plants. J. Agric. Meteorol. 60 (in press).Google Scholar
  21. [21]
    Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473-497.CrossRefGoogle Scholar
  22. [22]
    Omasa, K.; Shimazaki, K.I.; Aiga, I.; Larcher, W. and Onoe, M. (1987) Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves. Plant Physiol. 84: 748-752.CrossRefGoogle Scholar
  23. [23]
    Omasa, K. (1996) Image diagnosis of photosynthesis in cultured tissues. Acta Hort. 319: 653-658.Google Scholar
  24. [24]
    Genty, B. and Meyer, S. (1994) Quantitative mapping of leaf photosynthesis using chlorophyll fluorescence imaging. Aust. J. Plant Physiol. 22: 277-284.Google Scholar
  25. [25]
    Siebke, K. and Weis, E. (1995) Imaging of chlorophyll-a-fluorescence in leaves: Topography of photosynthetic oscillations in leaves of Glechoma hederacea. Photosynth. Res. 45: 225-237.CrossRefGoogle Scholar
  26. [26]
    Meng, Q.; Siebke, K.; Lippert, P.; Baur, B.; Mukherjee, U. and Weis, E. (2001) Sink-source transition in tabacco leaves visualized using chlorophyll fluorescence imaging. New Phytologist 151: 585-595.CrossRefGoogle Scholar
  27. [27]
    Oxborough, K. and Baker, N.R. (1997) An instrument capable of imaging chlorophyll a fluorescence intact leaves at very low irradiance and at cellular and subcellular levels of organization. Plant Cell Environ. 20: 1473-1483.CrossRefGoogle Scholar
  28. [28]
    Ibaraki, Y.; Iwabuchi, K. and Okada, M. (2004) Chlorophyll fluorescence analysis for rice leaves grown under elevated CO 2 conditions. J. Agric. Meteorol. 60 (in press).Google Scholar
  29. [29]
    Gitelson, A.A. (2004) Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 161: 165-173.CrossRefGoogle Scholar
  30. [30]
    Chappelle, E.W.; Kim, M.S. and Mcmurtrey, J.E. (1992) Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sens. Environ. 39: 239-247.CrossRefGoogle Scholar
  31. [31]
    Carter, G.A.; Rebbeck, J. and Percy, K.E. (1995) Leaf optical properties in Liriodendron tulipifera and Pinus strobus as influenced by increased atmospheric ozone and carbon dioxide. Can. J. For. Res. 25: 407-412.CrossRefGoogle Scholar
  32. [32]
    Gamon, J.A.; Serrano, L. and Surfus, J.S. (1997) The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112: 492-501.CrossRefGoogle Scholar
  33. [33]
    Yamamoto, H.Y. (1979) Biochemistry of violaxanthin cycle in higher plant. Pure Appl. Chem. 51: 639 648.CrossRefGoogle Scholar
  34. [34]
    Stylinski, C.D.; Gamon, J.A. and Oechel, W.C. (2002) Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species. Oecologia 131: 366-374.CrossRefGoogle Scholar
  35. [35]
    Carter, G.A.; Cibula, W.G. and Miller, R.L. (1996) Narrow-band reflectance imagery compared with thermal imagery for early detection of plant stress. J. Plant. Physiol. 148: 515-522.CrossRefGoogle Scholar
  36. [36]
    Kozai, T.; Oki, H. and Fujiwara, K. (1990) Photosynthetic characteristics of Cymbidium plantlet in vitro. Plant Cell Tissue Org. Cult. 22: 205-211.CrossRefGoogle Scholar
  37. [37]
    Fujiwara, K. and Kozai, T. (1995) Physical microenvironment and its effects. In: Aitken-Christie, J.; Kozai, T. and Smith, M.A.L. (Eds.) Automation and Environmental Control in Plant Tissue Cultures. Kluwer Academic Publishers, Dordrecht, The Netherlands; pp. 319-369.CrossRefGoogle Scholar
  38. [38]
    Fujiwara, K.; Kozai, T.; Nakajo, Y. and Watanabe, I. (1989) Effects of closures and vessels on light intensities in plant tissue culture vessels. J. Agric. Meteorol. 45: 143-149 (in Japanese with English abstract).CrossRefGoogle Scholar
  39. [39]
    Watanabe, S.; Nakano, Y. and Okano, K. (2001) Simple measurement of light-interception by individual leaves in fruit vegetables by using an integrated solarimeter film. (Japanese text with English summary) Environ. Control Biol. 39: 121-125.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Yasuomi Ibaraki
    • 1
  1. 1.Department of Biological ScienceYamaguchi UniversityYamaguchi-shi, Yamaguchi 753-8515Japan

Personalised recommendations