Oxygen Transport In Plant Tissue Culture Systems

Oxygen transport limitations
  • Wayne R. Curtis
  • Amalie L. Tuerk
Part of the Focus on Biotechnology book series (FOBI, volume 6)


Mass Transfer Coefficient Root Culture Oxygen Transfer Oxygen Transport Plant Tissue Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Curtis, W.R. (2005) Application of bioreactor design principles to plant micropropagation. Invited contribution, 1st Int. Symp. on Liquid Systems for In Vitro Mass Propagation of Plants. Kluwer Academic Publishers, The Netherlands; (in press).Google Scholar
  2. [2]
    Singh, G. and Curtis, W.R. (1994) Reactor design for plant cell suspension culture. In: Shargool, P.D. and Ngo, T.T. (Eds.) Biotechnological Applications of Plant Culture. CRC Press, Boca Raton, FL; pp.153 184.Google Scholar
  3. [3]
    Tescione, L., Ramakrishnan, D. and Curtis, W.R. (1997) The role of liquid mixing and gas-phase dispersion in a submerged, sparged root reactor. Enz. Microbial Technol. 20: 207-213.CrossRefGoogle Scholar
  4. [4]
    Ramakrishnan, D. and Curtis, W.R. (2004) Trickle-bed root culture bioreactor design and scale-up: Growth, fluid-dynamics, and oxygen mass transfer. Biotechnol. Bioeng. 88(2): 248-260.CrossRefGoogle Scholar
  5. [5]
    Kim, Y.J.; Weathers, P.J. and Wyslouzil, B.E. (2002) Growth of Artemisia annua hairy roots in liquid-and gas-phase reactors. Biotechnol. Bioeng. 80(4): 454-464.CrossRefGoogle Scholar
  6. [6]
    Bordonaro, J.L. and Curtis, W.R. (1997) Development of a fluorescent tracer technique to evaluate mixing in plant root culture. Biotechnol. Techniques 11(8): 597-600.Google Scholar
  7. [7]
    Hsiao, T.Y.; Bacani, F.T.; Carvalho, E.B. and Curtis, W.R. (1999) Development of a low capital investment reactor system: Application for plant cell suspension culture. Biotechnol. Prog. 15(1): 114 122.CrossRefGoogle Scholar
  8. [8]
    Buwalda, F.; Frenck, R.; Lobker, B.; Berg-De Vos, B. and Kim, K.S. (1995) EBB and flow cultivation of Chrysanthemumcuttings in different growing media. Acta Hort. 401:193-200.CrossRefGoogle Scholar
  9. [9]
    Carvalho, E. and Curtis, W.R. (1998) Characterization of fluid-flow resistance in root cultures with a convective flow tubular bioreactor. Biotechnol. Bioeng. 60(3): 375-384.CrossRefGoogle Scholar
  10. [10]
    Tescione, L.; Asplund P. and Curtis, W.R. (1999) Reactor design for root culture: Oxygen mass transfer limitation. In: Fu, T.J.; Singh, G. and Curtis, W.R. (Eds.) Plant Cell and Tissue Culture for the Production of Food Ingredients. Kluwer Academic/Plenum Publishers, New York; pp. 139-156.CrossRefGoogle Scholar
  11. [11]
    Wilke, C.R. and Chang, P. (1955) Correlation of diffusion coefficients in dilute solutions. AIChE J. 1(2): 264-270.CrossRefGoogle Scholar
  12. [12]
    Ramakrishnan, D. and Curtis, W.R. (1994) Fluid dynamic studies on plant root cultures for application to bioreactor design. In: Furusaki, S. and Ryu, D.D.Y (Eds.) Studies in Plant Science, 4: Advances in Plant Biotechnology. Elsevier, Amsterdam; pp. 281-305.CrossRefGoogle Scholar
  13. [13]
    Cussler, E.L. (1997) Diffusion: Mass transfer in fluid systems. 2nd Edition, Cambridge University Press.Google Scholar
  14. [14]
    Bennett, C.O. and Myers, J.E. Momentum Heat and Mass Transfer. 3rd Ed., McGraw Hill, 1982.Google Scholar
  15. [15]
    Asplund, T.A. and Curtis, W.R. (2001) Intrinsic oxygen use kinetics of transformed root culture. Biotechnol. Prog. 17: 481-489.CrossRefGoogle Scholar
  16. [16]
    Ramakrishnan, D. and Curtis, W.R. (1995) Elevated meristematic respiration in plant root cultures: implications to reactor design. J. Chem. Eng. Japan 28(4): 491-493.CrossRefGoogle Scholar
  17. [17]
    Mor, T.S.; Moon, Y.S.; Palmer, K.E. and Mason, H.S. (2003) Gemini-virus vectors for high-level expression of foreign proteins in plant cells. Biotechnol. Bioeng. 81(4): 430-437.CrossRefGoogle Scholar
  18. [18]
    Felenbok, B. (1991) The ethanol utilization regulon of Aspergillus nidulans: the alcA-alcR system as a tool for the expression of recombinant proteins. J. Biotechnol. 17:11-18.CrossRefGoogle Scholar
  19. [19]
    Gamborg, O.L.; Miller, R.A. and Ojima, K. (1968) Nutrient requirements of suspension of soybean root cells. Exp. Cell Res. 50: 148-151.CrossRefGoogle Scholar
  20. [20]
    Ruchti, G.; Dunn, I.J.; Bourne, J.R. and Von Stockar, U. (1985) Practical guidelines for the determination of oxygen transfer coefficients (KLa) with the sulfite oxidation method. Chem. Eng. J. 30(1): 29-38.CrossRefGoogle Scholar
  21. [21]
    Carvalho, E.B. and Curtis, W.R. (2002) Effect of elicitation on growth, respiration and nutrient uptake of root and cell suspension cultures of Hyoscyamus muticus. Biotechnol. Progress 18: 282-289.CrossRefGoogle Scholar
  22. [22]
    Umbreit, W.H.; Burris, R.H. and Stauffer, J.F. (1972) Manometric and biochemical methods applicable to the study of tissue metabolism. Burgess Publishing Company, Minneapolis, MN.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Wayne R. Curtis
    • 1
  • Amalie L. Tuerk
    • 2
  1. 1.108 Fenske LaboratoryThe Pennsylvania State UniversityUSA
  2. 2.Department of Chemical EngineeringThe Pennsylvania State University

Personalised recommendations