Temporary Immersion Bioreactor

  • F. Afreen
Part of the Focus on Biotechnology book series (FOBI, volume 6)


Somatic Embryo Somatic Embryogenesis Plant Tissue Culture Culture Chamber Photoautotrophic Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aitken-Christie, J. (1991)Automation. In: Debergh, P. C. and Zimmerman, R. H. (Eds.) Micropropagation. Kluwer Academic Publishers, Dordrecht, The Netherlands; pp. 342-354.Google Scholar
  2. [2]
    Vasil, I. K. (1991)Rationale for the scale-up and automation of plant propagation. In: Vasil, I. K. (Ed.) Scale-Up and Automation in Plant Propagation. Cell culture and Somatic Cell Genetics of Plants, Vol. 8. Academic Press, San Diego; pp. 1-12.Google Scholar
  3. [3]
    LeathersR. R.; Smith M. A. L. Aitken-ChristitJ. (1995)Automation of the bioreactor process for mass propagation and secondarymetabolism. In: Aiken-Christie, J.; Kozai, T. and Smith, M. A. L. (Eds.) Automation and Environmental Control in Plant Tissue Culture. Kluwer Academic Publishers, Dordrecht, The Netherlands; pp. 187-214.CrossRefGoogle Scholar
  4. [4]
    Preil, W. (1991) Application of bioreactors in plant propagation. In: Debergh, P. C. and Zimmerman, R. H., (Eds.) Micropropagation. Kluwer Academic Publishers, Dordrecht , The Netherlands; pp. 425-445.CrossRefGoogle Scholar
  5. [5]
    Paek K. Y.; Hahn, E. J. and On, S. H. (2001) Application of bioreactors for large-scale micropropagation system of plants. In Vitro Cell. Dev. Biol.- Plant. 37: 149-157.CrossRefGoogle Scholar
  6. [6]
    Debergh, P. and Maene, L. (1984) Pathological and physiological problems related to the in vitro culture of plants. Parasitica 40: 69-75.Google Scholar
  7. [7]
    Ziv, M. (1991) Quality of micropropagated plants - vitrification. In Vitro Cell. Dev. Biol . - Plant 27: 64-69.CrossRefGoogle Scholar
  8. [8]
    Ziv, M. (1991) Vitrification: morphological and physiological disorders of in vitroplants. In: Debergh, P.C. and Zimmerman, R.H. Micropropagation. Kluwer Academic Publishers, Dordrecht, The Netherlands; pp. 45-69.CrossRefGoogle Scholar
  9. [9]
    Akita, M. and Takayama, S. (1994) Stimulation of potato (Solanum tuberosum L.)tuberization by semicontinuous liquid medium surface level control. Plant Cell Rep. 13: 184-187.PubMedGoogle Scholar
  10. [10]
    Zobayed, S. M. A.; Murch, S. J.; Rupasinghe, H. P. V.; de Boer J. G.; Glickman, B. W.; and Saxena, P. K. (2004) Optimized system for biomass production, chemical characterization and evaluation of chemopreventive properties of Scutellaria baicalensisGeorgi. Plant Sci. 167:439-446.CrossRefGoogle Scholar
  11. [11]
    Heller, R. (1965)Some aspects of the inorganic Nutrition of plant tissue cultures. In: White, P.R. and Grove, A.R. (Eds). Proceedings of an International Conference on Plant Tissue Culture. England.pp. 1-8.Google Scholar
  12. [12]
    Tisserat, B. and Vandercook, C. E. (1985)Development of an automated plant culture system. Plant Cell Tissue Org. Cult. .5: 107-117.CrossRefGoogle Scholar
  13. [13]
    Aitken-Christie, J.; Singh, A. P. and Davies, H. (1988) Multiplication of meristematic tissue: a new tissue culture system for radiata pine. In: Hanover, J.W. and Keathley, D.E. (Eds.) Genetic Manipulation of Woody Plants. Plenum Press, New York; pp. 413-432.CrossRefGoogle Scholar
  14. [14]
    Simonton, W.; Robacker C. and Krueger S. (1991) A programmable micropropagation apparatus using cycled liquid medium. Plant Cell Tissue Org. Cult. 27: 211-218.CrossRefGoogle Scholar
  15. [15]
    Alvard, D.; Cote, F. and C. Teisson (1993) Comparison of methods of liquid medium culture for banana propagation. Effects of temporary immersion of explants. Plant Cell Tissue Org. Cult. 32: 55-60.CrossRefGoogle Scholar
  16. [16]
    Berthouly, M.; Dufour, M.; Alvaro, D.; Carasco, C.; Alemanno, L. and Teisson, C. (1995) Coffee micropropagation in liquid medium using temporary immersion technique’. In: 16éme Colloque, Paris, 2, pp. 514-519.Google Scholar
  17. [17]
    Etienne, H.; Lartaud, M.; Michaux-Ferriére, N.; Carron, M. P.; Berthouly, M. and Teisson, C. (1997) Improvement of somatic embryogenesis in Hevea brasilensis(Mull. Arg.) using the temporary immersion technique. In Vitro Cell. Dev. Biol. -Plant 33: 81-87.Google Scholar
  18. [18]
    Cabasson, C.; Ollitrault, P.; Coà te, F.; Michaux-Ferrie¡re, N.; Dambier, D.; Dalnic, R. and Teisson, C. (1995) Characteristics of citrus cell cultures during undifferentiated growth on sucrose and somatic embryogenesis on galactose. Physiol. Plant. 93: 464-470.CrossRefGoogle Scholar
  19. [19]
    Ziv, M. (2002) Simple bioreactors for mass propagation of plants. 1st Int. Symp. Liquid Systems for In VitroMass Propagation of Plants, Ås, Norway , May 29th – June 2 nd .Google Scholar
  20. [20]
    Afreen, F.; Zobayed, S. M. A and Kozai, T. (2002) Photoautotrophic culture of Coffea arabusta somatic embryos: Development of a bioreactor for the large-scale plantlet conversion from cotyledonary embryos. Ann. Bot. 9: 20-29.Google Scholar
  21. [21]
    Capot J. (1972) L’amelioration du cafeier en Cote d’Ivoire - Les hybrides ‘Arabusta’ Cafe Cacao The, 16: 3-17.Google Scholar
  22. [22]
    Dublin, P. (1980) Multiplication vegetative in vitro de l Arabusta. Café–Cacao–The. Vol. WWIV, 4: 281-290.Google Scholar
  23. [23]
    Afreen, F.; Zobayed, S. M. A. and Kozai, T. (2002) Photoautotrophic culture of Coffea arabusta somatic embryos: Photosynthetic ability and growth of different stage embryos. Ann. Bot. 9: 11-19.CrossRefGoogle Scholar
  24. [24]
    Afreen, F.; Zobayed, S. M. A.; Kubota, C.; Kozai, T. and Hasegawa, O. (2000) A combination of vermiculite and paper pulp supporting material for the photoautotrophic micropropagation of sweet potato. Plant Sci. 157: 225-231.CrossRefGoogle Scholar
  25. [25]
    Kozai, T.; Koyama, Y. and Watanabe, I. (1998) Multiplication of potato plantlets in vitro with sugar free medium under high photosynthesis photon flux. Acta Hort. 230: 121-127.Google Scholar
  26. [26]
    Fujiwara, K.; Kozai, T. and Watanabe, I. (1987) Fundamental studies on environments in plant tissue culture vessels. (3) Measurement of carbon dioxide gas concentration in closed vessels ontaining tissue cultured plantlets and estimates of net photosynthetic rates of plantlets. J. Agric. Meterol. 43: 21-30.CrossRefGoogle Scholar
  27. [27]
    Gupta, P. K.; Timmis R. and Carlson, W. C. (1993) In: Soh, W.Y.; Liu, J.R. and Komamine, A (Eds.) Advances in Development Biology and Biotechnology of Higher Plants. The Korean Society of Plant Tissue Culture, Korea; pp. 18-37.Google Scholar
  28. [28]
    Harrell, R. C. and Cantliffe, D. J. (1991) In: Vasil, I.K. (Ed.) Scale-up and Automation in Plant Propagation. Academic Press, New York; pp. 179-195.Google Scholar
  29. [29]
    Cazzulino, D.; Pederson, H. and Chin, C. K. (1990) In: Vasil, I.K. (Ed.) Bioreactors and Image Analysis for Scale-Up and Plant Propagation. Academic Press, New York; pp. 147-175.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • F. Afreen
    • 1
  1. 1.Department of Bioproduction ScienceChiba UniversityMatsudoJapan

Personalised recommendations