Design And Use Of The Wave Bioreactor For Plant Cell Culture

  • Regine Eibl
  • Dieter Eibl
Part of the Focus on Biotechnology book series (FOBI, volume 6)


Hairy Root Hairy Root Culture Plant Cell Culture Embryogenic Culture Secondary Metabolite Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bentebibel, S. (2003) Estudio de la producción de taxanos por cultivos de células en suspensión e inmovilzadas de Taxus baccata. Ph D Thesis, University of Barcelona, Barcelona.Google Scholar
  2. [2]
    Eibl, R. (2002) Fermentative Herstellung bioaktiver Wirkstoffe mit dem Wave. BioWorld 6: Sonderdruck BioteCHnet.Google Scholar
  3. [3]
    Eibl, R. and Eibl, D (2002) Bioreactors for plant cell and tissue cultures. In: Oksman-Caldentey, K.M. and Barz, W. (Eds.) Plant Biotechnology and Transgenic Plants. Marcel Decker, Inc., New York; ISBN 08247-0794-X; pp.163-199.Google Scholar
  4. [4]
    Eibl R (2003) Pflanzliche Zell-und Gewebekulturen-Wirkstoffproduzenten mit Zukunftspotential. Drogenreport 30: 17-19.Google Scholar
  5. [5]
    Lettenbauer, C. and Eibl, R. (2001) Application of the wave bioreactor 20 for hairy root cultures. In: Wildi, E. and Wink, M. (Eds.) Trends in Medicinal Plant Research: Screening, Biotechnology and Rational Phytotherapy. Romneya-Verlag, Dosenheim; ISBN 3934502024; pp. 139-141.Google Scholar
  6. [6]
    Palazón, J.; Mallol, A.; Eibl, R.; Lettenbauer, C.; Cusidó, R.M. and Piñol, M.T. (2003) Growth and ginsenoside production in hairy root cultures of Panax ginseng using a novel bioreactor. Planta Med. 69: 344-349.PubMedGoogle Scholar
  7. [7]
    Rothe, S. (2004) In vitro Produktion kosmetischer Wirkstoffe mit Pflanzenzell- und Gewebekulturen. Diploma Thesis; University of Applied Sciences Giessen Friedberg, Giessen.Google Scholar
  8. [8]
    Müller-Uri, F. and Dietrich, B. (1999) Kultivierung proembryogener Massen von Digitalis lanata im MiniPerm Bioreaktor. In Vitro News 3: 4.Google Scholar
  9. [9]
    Harrell, R.C.; Bieniek, M.; Hood, C.F.; Munilla, R. and Cantliffe, D.J. (1994) Automated in vitro harvest of somatic embryos. Plant Cell Tissue Org. Cult. 39: 171-183.Google Scholar
  10. [10]
    Fukui, H. and Tanaka, M. (1995) An envelope-shaped film culture vessel for plant suspension cultures and metabolite production without agitation.Plant Cell Tissue Org. Cult. 41: 17-21.Google Scholar
  11. [11]
    Ziv, M.; Ronen, G. and Raviv, M. (1998) Proliferation of meristematic clusters in disposable presterilized plastic bioreactors for large-scale micropropagation of plants. In Vitro Cell Dev. Biol.-Plant 34: 152-158.Google Scholar
  12. [12]
    Escalona, M.; Lorenzo, J.C.; Gonzalez, B.L.; Daquinta, M.; Gonzalez,J.L.; Desjardine, Y. and Borroto, C.G. (1999) Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep. 18: 743-748.Google Scholar
  13. [13]
    Curtis, W.R. (1999) Achieving economic feasibility for moderate-value food and flavour additives: A perspective on productivity and proposal for production technology cost reduction. In: Fu, D.J.; Singh, G. and Curtis, W.R. (Eds.) Plant Cell and Tissue Culture for the Production of Food Ingredients. Kluwer Academic Press, New York; ISBN 0-306-46100-5; pp. 225-236.Google Scholar
  14. [14]
    Endress, R. (1994) Plant Cell Biotechnology. 1st Edition. Springer Verlag, Heidelberg; ISBN 3-54056947-2; pp. 46-83.Google Scholar
  15. [15]
    Lee, B.H. (1996) Fundamentals of Food Biotechnology. 1st Edition, VCH Publishers, Inc., New York; ISBN 1-56081-694-5; pp. 355-370.Google Scholar
  16. [16]
    Mirjalili, N. and Linden, J.C. (1995) Gas phase composition effects on suspension cultures of Taxus cuspidata. Biotechnol. Bioeng. 48: 123-132.PubMedGoogle Scholar
  17. [17]
    Linden, J.C.; Haigh, J.R.; Mirjalili, N. and Phisaphalong, M. (2001) Gas concentration effects on secondary metabolite production by plant cell cultures. Adv. Biochem. Eng. Biotechnol. 72: 28-62.Google Scholar
  18. [18]
    Pechmann, G.; Ducommun, C.; Lisica, L.; Lisica, S.; Blum, P.; Eibl, R.; Eibl, D.; Schär, M.; Wolfram, L.; Rhiel, M.; Emmerling, M.; Röll, M.; Lettenbauer, C.; Rothmaier, M. and Flükiger, M. (2004) Production of pharmaceutical compounds with Wave 20 SPS. In: Conference proceedings, BioPerspectives, Wiesbaden (FRG), May 4-6 2004; pp. 338.Google Scholar
  19. [19]
    Flores, H.E.; Hoy, M.W. and Pickard J.J. (1987) Secondary metabolites from root cultures. Trends Biotechnol. 5: 64-69.Google Scholar
  20. [20]
    Wilson, P.D.G. (1997) The pilot-scale cultivation of transformed roots. In: Doran, P.M. (Ed) Hairy Roots: Culture and Applications. Harwood Academic Publishers, The Netherlands; ISBN 90-5702-117X; pp. 179-190.Google Scholar
  21. [21]
    Kim, Y.H. and Yoo, Y.J. (1993) Development of a bioreactor for high density culture of hairy roots. Biotechnol. Lett. 7: 859-862.Google Scholar
  22. [22]
    Nuutila, A.M.; Toivonen, L. and Kauppinen, V. (1994) Bioreactor studies of Catharanthus roseus: comparison of three bioreactor types. Biotechnol. Lett. 8: 61-66.Google Scholar
  23. [23]
    Hitaka, Y.; Kino-oka, M.; Taya, M. and Tone, S. (1999) Effect of liquid flow on pigment formation of red beet hairy roots. J. Chem. Eng. Jpn. 32: 370-373.Google Scholar
  24. [24]
    Honda, H.; Liu, C. and Kobayashi, T. (2001) Large-scale plant micropropagation. Adv. Biochem. Eng. Biotechnol. 72: 157-182.PubMedGoogle Scholar
  25. [25]
    Hu, W.W. and Zong J.J. (2001) Effect of a bottom clearance on performance of airlift bioreactor in high-density culture of Panax notoginseng cells. J. Biosci. Bioeng. 92: 389-392.PubMedGoogle Scholar
  26. [26]
    Kieran, P.M.; Malone, D.M.; MacLoughlin, P.F. (2000) Effects of hydrodynamic and interfacial forces on plant cell suspension systems. In: Scheper, T.; Schügerl, K. and Kretzmer, G. (Eds.) Advances in Biochemical Engineering Biotechnology; Vol 67, Influence of Stress on Cell Growth and Product Formation. Springer Verlag, Berlin Heidelberg; ISBN 3-540-66687-7; pp. 141-177.Google Scholar
  27. [27]
    Tescione, L.D.; Ramakrishnan, D. and Curtis, W.R. (1997) The role of liquid mixing and gas-phase dispersion in a submerged, sparged root reactor. Enz. Microb. Technol. 20: 207-213.Google Scholar
  28. [28]
    Williams, G.R.C. and Doran, P.M. (2000) Hairy root culture in a liquid-dispersed bioreactor: Characterization of spatial heterogeneity. Biotechnol. Prog. 16: 391-401.PubMedGoogle Scholar
  29. [29]
    Zhong, J.J.; Pan, Z.W.; Wu, J.; Chen, F.; Takagi, M. and Toshiomi, Y. (2002) Effect of mixing time on taxoid production using suspension cultures of Taxus chinensis in a centrifugal impeller bioreactor. J. Biosci. Bioeng. 94: 244-250.PubMedGoogle Scholar
  30. [30]
    Henzler, H.J. (2000) Particle stress in bioreactors. In: Scheper, T.; Schügerl, K. and Kretzmer, G. (Eds.) Advances in Biochemical Engineering Biotechnology; Vol 67, Influence of Stress on Cell Growth and Product Formation; Springer Verlag, Berlin Heidelberg; ISBN 3-540-66687-7; pp. 38-82.Google Scholar
  31. [31]
    Lübbert, A. (2000) Bubble column bioreactors. In: Schügerl, K.and Bellgardt, K.H. (Eds.) Bioreaction Engineering: Modelling and Control. Springer-Verlag, Berlin Heidelberg; ISBN 3-540-66906-X; pp. 247-273.Google Scholar
  32. [32]
    Reuss, M.; Schmalzriedt, S. and Jenne, M. (2000) Application of computational fluid dynamics (CFD) to modelling stirred tank bioreactors. In: Schügerl, K. and Bellgardt, K.H. (Eds.) Bioreaction Engineering: Modelling and Control. Springer-Verlag, Berlin Heidelberg, ISBN 3-540-66906-X; pp. 208-246.Google Scholar
  33. [33]
    Knevelman, C.; Hearle, D.C.; Osman, J.J.; Khan, M.; Dean, M.; Smith,M.; Aiyedebinu, A. and Cheung, K (2002) Characterisation and operation of a disposable bioreactor as a replacement for conventional steam in place inoculum bioreactors for mammalian cell culture processes. ACS Poster, Lonza Biologics, SL1 4DY (UK).Google Scholar
  34. [34]
    Rhiel, M. and Eibl, R. (2004) Der Wave als System zur Prozessentwicklung für Proteinexpressionen In: Conference proceedings, Biotech 2004, Wädenswil (CH), May 11-12 2004; pp. 20.Google Scholar
  35. [35]
    Singh, V. (2004) Overview of the Wave Bioreactor system. (accessed 17 July 2004).Google Scholar
  36. [36]
    Singh, V. (1999) Disposable bioreactor for cell culture using wave-induced agitations. Cytotechnol. 30: 149-158.Google Scholar
  37. [37]
    Lisica, S. (2004) Energieeintrag in Wave-Bioreaktoren. Modelling approaches. University of Applied Sciences Wädenswil, Wädenswil.Google Scholar
  38. [38]
    Eibl, R.; Eibl, D.; Pechmann, G.; Ducommun, C.; Lisica, L.; Lisica, S.; Blum, P.; Schär, M.; Wolfram, L.; Rhiel, M.; Emmerling, M.; Röll,M.; Lettenbauer, C.; Rothmaier, M. and Flükiger, M. (2003) Produktion pharmazeutischer Wirkstoffe in disposable Systemen bis zum 100 L Massstab, Teil 1, KTI-Projekt 5844.2 FHS. Final Report; University of Applied Sciences Wädenswil, Wädenswil.Google Scholar
  39. [39]
    Pechmann, G G.(2002) Disposable Wirkstoffproduktion im Wave-Reaktor mitanimalen Suspensionszellen. Diploma Thesis, University of Applied Sciences Anhalt, Köthen.Google Scholar
  40. [40]
    Kallupurackal, J. (2004) Beitrag zur Beschreibung des Energieeintrages im Wave-System. Semester Thesis; University of Applied Sciences, Wädenswil, Wädenswil.Google Scholar
  41. [41]
    Sowana, D.D.; Williams, D.R.G.; Dunlop, E.H.; Dally, B.B.; O‘Neill,B.K. and Fletcher, D.F. (2001) Turbulent shear stress effects on plant cell suspension cultures. Trans. I.Chem.E. 79: 867-875.Google Scholar
  42. [42]
    Tanaka, H. (1981) Technological problems in cultivation of plant cells at high density. Biotechnol. Bioeng. 23: 1203-1218.Google Scholar
  43. [43]
    Dunlop, E.H.; Namdev, P.K. and Rosenberg, M.Z. (1994) Effect of fluid shear forces on plant cell suspensions. Chem. Eng. Sci. 49: 2263-2276.Google Scholar
  44. [44]
    Chen, S.Y. and Huang, S.Y. (2000) Shear stress effects on cell growth and L-DOPA production by suspension culture of Stizolobium hassjoo cells in an agitated bioreactor. Bioprocess Eng. 22: 5-12.Google Scholar
  45. [45]
    Präve, P.; Faust, U.; Sittig, W.; Sukatsch, D.A. (1994) Handbuch der Biotechnologie. 4. Auflage, R. Oldenbourg Verlag, München Wien; ISBN 3-486-26223-8; pp. 189.Google Scholar
  46. [46]
    Griffiths, J.B. (1999) Mammalian cell culture reactors. In: Flickinger, S.W. and Drew, S.W. (Eds) Encyclopaedia of Bioprocess Technology, Vol 3, Fermentation Biocatalysis and Bioseparation. John Wiley & Sons, Inc., New York; ISBN 0-471-13822-3; pp. 1594-1607.Google Scholar
  47. [47]
    Eibl, R.; Hans, D.; Lettenbauer, C. and Eibl, D. (1999) Einsatz eines Taumelreaktorsystems mit interner Beleuchtung. BioWorld 2: 10-12.Google Scholar
  48. [48]
    Kato, A.; Shimizu, Y. and Nagai, S. (1975) Effect of initial kLa on the growth of tobacco cells in batch culture. J. Ferment. Technol. 53: 744-751.Google Scholar
  49. [49]
    Meijer, J.J.; ten Hoopen, H.J.G.; Luyben, K.C.A.M. and Libbenga, K.R. (1993) Effects of hydrodynamic stress on cultured plant cells: A literature survey. Enz. Microbiol. Technol. 15: 234-238.Google Scholar
  50. [50]
    Wheathers, P.J.; Wyslouzil, B.E. and Whipple M. (1997) Laboratory-scale studies of nutrient mist reactors for culturing hairy roots. In: Doran, P.M. (Ed.) Hairy Roots: Culture and Applications. Harwood Academic Publishers, The Netherlands; ISBN 90-5702-117-X; pp. 191-199.Google Scholar
  51. [51]
    Yoshikawa, T. (1997) Production of ginsenosides in ginseng hairy root cultures. In: Doran, P.M. (Ed.) Hairy Roots: Culture and Applications. Harwood Academic Publishers, The Netherlands; ISBN 90-5702117-X; pp. 73-79.Google Scholar
  52. [52]
    Kato, Y.; Honda, H.; Hiraoka, S.; Tada, Y.; Kobayashi, T.; Sato, K.; Saito, T.; Nomura,T. and Ohishi, T. (1997) Performance of a shaking vessel-type bioreactor with a current pole. J. Ferment. Bioeng. 84: 65-69.Google Scholar
  53. [53]
    Honda, H.; Hiraoka, K.; Nagamori, E.; Omote, M.; Kato, Y.; Hiraoka, S. and Kobayashi, T. (2002) Enhanced anthocyanin production from grape callus in an air-lift type bioreactor using a viscous additive-supplemented medium. J. Biosci. Bioeng. 94: 135-139.PubMedGoogle Scholar
  54. [54]
    Kim, D.J. and Chang, H.N. (1990) Enhanced shikonin production from Lithospermum erythrorhizon by in situ extraction and calcium alginate immobilization. Biotechnol. Bioeng. 36: 460-466.PubMedGoogle Scholar
  55. [55]
    Brodelius, P. (1985) The potential role of immobilisation in plant cell biotechnology. Trends Biotechnol. 3: 280-285.Google Scholar
  56. [56]
    Dörnenburg, H. and Knorr, D. (1995) Strategies for the improvement of secondary metabolite production in plant cell cultures. Enz. Microbiol. Technol. 17: 674-684.Google Scholar
  57. [57]
    Kieran, P.M.; MacLoughlin, P.F. and Malone D.M. (1997) Plant cell suspension cultures: some engineering considerations. J. Biotechnol. 59: 39-52.PubMedGoogle Scholar
  58. [58]
    Warlies, S.; Reinhardt, K. and Eibl, R. (1999) Optimierung der Synthese von Alliin/Allicin mit pflanzlichen Zellkulturen in vitro und im Bioreaktor. Report; University of Applied Sciences Wädenswil, Wädenswil.Google Scholar
  59. [59]
    Hirasuna, T.J.; Pestchanker, L.J.; Srinivasan V. and Shuler, M.L. (1996) Taxol production in suspension cultures of Taxus baccata. Plant Cell Tissue Org. Cult. 44: 95-102.Google Scholar
  60. [60]
    Ketchum, R.E.B. and Gibson, D.M. (1996) Paclitaxel production in cell suspension cultures of Taxus. Plant Cell Tissue Org. Cult. 46: 9-16.Google Scholar
  61. [61]
    Navia-Osorio A.; Garden, H.; Cusidó, R.M.; Alfermann, A.W. and Piñol, M.T. (2002) Taxolmboxtextregistered and baccatin III production in suspension cultures of Taxus baccata and Taxus wallichiana in an airlift bioreactor. J. Plant Physiol. 159: 97-102.Google Scholar
  62. [62]
    Cusidó, R.M.; Palazón, J.; Bonfill, M.; Navia-Osorio, A.; Morales, C. and Piñol, M.T. (2002) Improved paclitaxel and baccatin III production in suspension cultures of Taxus media. Biotechnol. Prog. 18: 418-423.PubMedGoogle Scholar
  63. [63]
    Oksman-Caldentey, K.M.; Vuorela, H.; Strauss, A. and Hiltunen, R. (1987) Variation in the tropane alkaloid content of Hyoscyamus muticus plants and culture clones. Planta Med. 53: 349-354.PubMedGoogle Scholar
  64. [64]
    Ouhikainen, K.; Lindgren, L.; Jokelainen, T.; Hiltunen, R.; Teeri, T.M. and Oksman-Caldentey, K.M. (1999) Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering. Planta Med. 208: 545-551.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Regine Eibl
    • 1
  • Dieter Eibl
    • 1
  1. 1.Department of BiotechnologyUniversity of Applied Sciences WädenswilSwitzerland

Personalised recommendations