Aeration In Plant Tissue Culture

Engineering aspects of vessel design
  • S.M.A. Zobayed
Part of the Focus on Biotechnology book series (FOBI, volume 6)


Plant Tissue Culture Culture Vessel Bulk Flow Forced Ventilation Mutual Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Jackson, M. B. (2003) Aeration stress in plant tissue cultures. Bulg. J. Plant Physiol., Special Issue :96–109.Google Scholar
  2. [2]
    Kozai, T.; Iwabuchi, K.; Watanabe, K. and Watanabe, I. (1991) Photoautotrophic and photomixotrophic growth of strawberry plantlets in vitro and changes in nutrient composition of the medium. Plant Cell Tissue Org. Cult. 25: 107-115.Google Scholar
  3. [3]
    Blazková, A. J.; Ullmann, J.; Josefusova, Z; Machackova, I. and Krekule, J. (1989) The influence of gaseous phase on the growth of plants in vitro : the effect of different types of stoppers. Acta Hort. 251: 209-214.CrossRefGoogle Scholar
  4. [4]
    Jackson, M. B.; Abbott, A. J.; Belcher, A. R. and Hall, K. C. (1987) Gas exchange in plant tissue cultures. In: Jackson, M.B.; Mantell, S. and Blake,J. (Eds.) Advances in the Chemical Manipulation of Plant Tissue Cultures. BPGRF Monograph 16. Bristol: Plant Growth Regulators Group. 57-71.Google Scholar
  5. [5]
    Jackson, M. B.; Abbott, A. J.; Belcher, A. R.; Hall, K. C.; Butler, R. and Cameron, J. (1991) Ventilation in plant tissue culture and effects of poor aeration on ethylene and carbon dioxide accumulation, oxygen depletion and explant development. Ann. Bot. 67: 229-237.CrossRefGoogle Scholar
  6. [6]
    Zobayed, S. M. A.; Armstrong, J. and Armstrong, W. (1999) Evaluation of a closed system, diffusive and humidity-induced convective throughflow ventilation on the growth and physiology of cauliflower in vitro. Plant Cell Tissue Org. Cult. 59: 113-123.CrossRefGoogle Scholar
  7. [7]
    Zobayed, S. M. A.; Armstrong, J. and Armstrong, W. (2001) Micropropagation of potato: evaluation of closed diffusive and forced ventilation on growth and tuberization. Ann. Bot. 87: 53-59.CrossRefGoogle Scholar
  8. [8]
    Dacey, J. W. H. (1981) Pressurised ventilation in the yellow water-lily. Ecology 62: 1137-1147.CrossRefGoogle Scholar
  9. [9]
    Grosse, W. and Mevi-Schutz, J. (1987) A beneficial gas-transport system in Nymphoides peltata. Am. J. Bot. 74: 947-952.CrossRefGoogle Scholar
  10. [10]
    Armstrong, J.; Armstrong, W. and Beckett, P. M. (1988) Phragmites australis: A critical appraisal of the ventilating pressure concept and an analysis of resistance to pressurised gas-flow and gaseous diffusion in horizontal rhizomes. New Phytologist 110: 383 - 390.CrossRefGoogle Scholar
  11. [11]
    Leuning, R. (1983) Transport of gases into leaves. Plant Cell Environ. 6: 181-194.Google Scholar
  12. [12]
    Armstrong, W.; Armstrong, J. and Beckett, P. M. (1988) Pressurized ventilation in emergent macrophytes: the mechanism and mathematical modeling of humidity-induced convection. Aqua. Bot. 54: 121-135.CrossRefGoogle Scholar
  13. [13]
    Armstrong, J.; Armstrong, W.; Beckett, P. M.; Halder, J. E.; Lythe, S.; Holt R. and Sinclair, A. (1996) Pathways of aeration and the mechanisms and beneficial effects of humidity- and Venturi-induced convections in Phragmites australis (Cav.) Trin. ex Steud. Aqua. Bot. 54: 177-197.CrossRefGoogle Scholar
  14. [14]
    Kozai, T.; Kubota, C.; Zobayed, S.M.A.; Nguyen, Q.T.; Afreen-Zobayed, F. and Heo, J. (1999) Developing a mass-propagation system of woody plants. In: Watanabe, K. and Komamine, A. (Eds.) Challenge of Plant and Agricultural Sciences to the Crisis of Biosphere on the Earth in the 21st Century, Landes Company, USA; pp. 293-307.Google Scholar
  15. [15]
    Zobayed S. M. A, Afreen, F.; Kubota, C. and Kozai, T. (2000) Mass propagation of Eucalyptus in a scaled-up vessel under in vitro photoautotrophic condition. Ann. Bot. 85: 587-592.CrossRefGoogle Scholar
  16. [16]
    Zobayed, S.M.A.; Afreen, F.; Xiao, Y. and Kozai, T. (2004) Recent advancement in research on photoautotrophic micropropagation using large culture vessels with forced ventilation. In Vitro Cell. Dev. Biol.-Plant (in press).Google Scholar
  17. [17]
    Afreen, F.; Zobayed, S. M. A.; Kubota, C.; Kozai, T. and Hasegawa, O.(1999) Supporting material affects the growth and development of in vitro sweet potato plantlets cultured photoautotrophically. In Vitro Cell. Dev. Biol.-Plant 35: 470-474.CrossRefGoogle Scholar
  18. [18]
    Afreen, F.; Zobayed, S. M. A.; Kozai, T. (2002) Photoautotrophic culture of Coffea arabusta somatic embryos II: development of a bioreactor for the large-scale plantlet conversion from cotyledonary embryos. Ann. Bot. 9: 20-29.Google Scholar
  19. [19]
    Kozai, T.; Afreen, F.; Zobayed, S. M. A. (2004). Photoautotrophic (sugar-free medium) micropropagation as a new propagation and transplant production system. Springer, Dordrecht, The Netherlands (in press).Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • S.M.A. Zobayed
    • 1
  1. 1.Department of Plant AgricultureUniversity of GuelphGuelphCanada

Personalised recommendations