The Uses Of Ultrasound In Plant Tissue Culture

  • Victor Gaba
  • K. Kathiravan
  • S. Amutha
  • Sima Singer
  • Xia Xiaodi
  • G. Ananthakrishnan
Part of the Focus on Biotechnology book series (FOBI, volume 6)


Somatic Embryo Ultrasonic Treatment Plant Tissue Culture Hibiscus Cannabinus Ultrasound Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Weinberger, P.; Anderson, P. and Donovan, L.S. (1979) Change in production, yield, and chemical composition of corn (Zea mays) after ultrasound treatment of seeds. Radiat. Environ. Biophys. 16: 81-88.Google Scholar
  2. [2]
    Miyoshi, K. and Mii, M. (1988) Ultrasonic treatment for enhancing seed germination of terrestrial orchid, Calanthe discolor, in asymbiotic culture. Sci. Hort. 35: 127-130.CrossRefGoogle Scholar
  3. [3]
    Mukhamedkhanov, O. and Shermukhamedor, K. (1971) Effect of ultrasound on development and yield of cotton cv.108-F. Nauchn. Tr. Trashk. skh. Ins. 22: 45-71 (Field Crop Abstr. 1972, 25: 4165).Google Scholar
  4. [4]
    Timonin, M.I. (1966) Effect of ultrasound on the germination of white spruce and jack pine seeds. Can. J. Bot. 44: 113-115.CrossRefGoogle Scholar
  5. [5]
    Weinberger, P. and Burton, C. (1981) The effect of sonication on the growth of some tree seeds. Can. J. For. Res. 11: 840-844.CrossRefGoogle Scholar
  6. [6]
    Joersbo, M. and Brunstedt, J. (1990) Protein synthesis stimulated in sugar beet cells and protoplasts. Ultrasound Med. Biol. 16: 719-724.CrossRefGoogle Scholar
  7. [7]
    Joersbo, M. and Brunstedt, J. (1990) Inoculation of sugar beet protoplasts with beet necrotic yellow vein virus particles by mild sonication. J. Virol. Methods 29: 63-9.CrossRefGoogle Scholar
  8. [8]
    Dong, L.L.; Yong, W.J.; Lin, L.D. and Wu, J.Y. (2002) Enhancement of shikonin production in single-and two-phase suspension cultures of Lithospermum erythrorhizon cells using low-energy ultrasound. Biotechnol. Bioeng. 78: 81-88.CrossRefGoogle Scholar
  9. [9]
    Millar, M.V.; Ciaravino, V.; Allen, D. and Jensen, S. (1976) Effect of 2 MHz ultrasound on DNA, RNA and protein synthesis in Pisum sativum root meristem cells. Int. J. Radiat. Biol. 30: 217-222.Google Scholar
  10. [10]
    Higashi, K.; Hanasaki, N.; Nakanishi, A.; Shimomura, E.; Hirano, H.; Gotoh, S. and Sakamoto, Y. (1978) Difference in susceptibility to sonication of chromatins containing transcriptionally active and inactive ribosomal genes. Biochim. Biophys. Acta. 520: 612-622.Google Scholar
  11. [11]
    Currier, H B. and Webster, D.H. (1964) Callose formation and subsequent disappearance: studies in ultrasound stimulation. Plant Physiol. 39: 843-847.CrossRefGoogle Scholar
  12. [12]
    Pedroso, M.C. and Pais, M.S. (1992) Minituber production from immature seed suspension culture of Orchis papilionacea. In Vitro Cell. Dev. Biol.- Plant 28P:183-186.Google Scholar
  13. [13]
    Zhang, L.J.; Cheng, L.M.; Xu, N.; Zhao, N.M.; Li, C.G.; Jing, Y. and Jia, S.R. (1991) Efficient transformation of tobacco by ultrasonication. Bio/Technol. 9: 996-997.CrossRefGoogle Scholar
  14. [14]
    Joersbo, M. and Brunstedt, J. (1990) Direct gene transfer to plant protoplasts by mild sonication. Plant Cell Rep. 9: 207-210.CrossRefGoogle Scholar
  15. [15]
    Trick, H.N. and Finer, J.J. (1997) SAAT: Sonication-assisted Agrobacterium-mediated transformation. Transgenic Res. 6: 329-336.CrossRefGoogle Scholar
  16. [16]
    Trick, H.N. and Finer, J.J. (1998) Sonication-assisted Agrobacterium-mediated transformation of soybean (Glycine max L.) Merrill embryogenic suspension culture tissue. Plant Cell Rep. 17: 482-488.CrossRefGoogle Scholar
  17. [17]
    Santarem, E.R.; Trick, H.N.; Essig, J.S. and Finer, J.J. (1998) Sonication-assisted Agrobacteriummediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep. 17: 752-759.CrossRefGoogle Scholar
  18. [18]
    Meurer, C.A.; Dinkins, R.D. and Collins, G.B. (1998) Factors affecting soybean cotyledonary node transformation. Plant Cell Rep. 18: 180-186.CrossRefGoogle Scholar
  19. [19]
    Trick, H.N. and Finer, J.J. (1999) Induction of somatic embryogenesis and genetic transformation of Ohio buckeye (Aesculus glabra Willd.) In Vitro Cell. Dev. Biol. – Plant 35: 57-60.CrossRefGoogle Scholar
  20. [20]
    Zaragoza, C.; Munoz-Bertomeu, J. and Arrillaga, I. (2004) Regeneration of herbicide-tolerant black locust transgenic plants by SAAT. Plant Cell Rep. 22: 832-838.CrossRefGoogle Scholar
  21. [21]
    Gaba, V.; Xia X.; Singer S.; Elman C.; Gal-On, A. and Ananthakrishnan, G. (2001) Ultrasonic treatment induces shoot regeneration in squash cotyledon explants in vitro. In Vitro Cell. Dev. Biol.–Plant 37: 859 860. Abstract no. P3022.Google Scholar
  22. [22]
    Gaba, V.; Xia, X.; Singer, S.; Fischer, I.; Gal-On, A. and Ananthakrishnan, G. (2002) Ultrasonic treatment damages the surface layer of explants and induces shoot regeneration in squash cotyledon explants. Abstract P-1385, p. 130. Book of Abstracts, IAPTC&B Congress, Florida, USA, June 2002.Google Scholar
  23. [23]
    Maitz, M.; Trampler, F.; Gröschel, M.; da Camarar Machado, A. and Laimer da Camara Machado, M. (2000) Use of ultrasound cell retention system for the size fractionation of somatic embryos of woody species. Plant Cell Rep. 19: 1057-1063.CrossRefGoogle Scholar
  24. [24]
    Bohm, H.; Antony, P.; Davey, M.R.; Briarty, L.R.; Power, J.B.; Lowe, K.C.; Benes, E. and Groschl, M. (2000) Viability of plant cell suspensions exposed to homogeneous ultrasonic fields of different energy density and wave type. Ultrasonics 38: 629-32.CrossRefGoogle Scholar
  25. [25]
    Nyborg, W.L. (1968) Mechanisms for nonthermal effects of sound. J. Acoust. Soc. Am. 44: 1302-1309.CrossRefGoogle Scholar
  26. [26]
    Peacock, A.R. and Pritchard, N.R (1968) Some biophysical aspects of ultrasound. Prog. Biophys. Mol. Biol. 18: 187-208.Google Scholar
  27. [27]
    Joersbo, M. and Brunstedt, J. (1992) Sonication: a new method for gene transfer to plants. Physiol. Plant. 85: 230-234.CrossRefGoogle Scholar
  28. [28]
    Weber, S.; Friedt, W.; Landes, N.; Molinier, J.; Himber, C.; Rousselin, P.; Hahne, G. and Horn, R. (2002) Improved Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.): assessment of macerating enzymes and sonication. Plant Cell Rep. 21: 475-482.CrossRefGoogle Scholar
  29. [29]
    Gonzalez, E.R.; de Andrade, A.; Bertolo, A.L.; Lacerda, G.C.; Carneiro, R.T.; Prado, D.V.A.; Labate, M.T.V. and Carlos, A. (2002) Production of transgenic Eucalyptus grandis × E. urophylla using the sonication-assisted Agrobacterium transformation (SAAT) system. Functional Plant Biol. 29: 97-102.CrossRefGoogle Scholar
  30. [30]
    Amoah, B.K.; Wu, H.; Sparks, C. and Jones, H.D. (2001) Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. J. Exp. Bot. 52: 1135-1142.CrossRefGoogle Scholar
  31. [31]
    Humara, J. M.; Lopez, M. and Ordas, R. J. (1999) Agrobacterium tumefaciens-mediated transformation of Pinus pinea L. cotyledons: An assessment of factors influencing the efficiency of uidA gene transfer. Plant Cell Rep. 19: 51-58.PubMedGoogle Scholar
  32. [32]
    Srivatanakul, M.; Park, S.H.; Sung H.; Salas, M.G. and Smith, R. H. (2001) Transformation parameters enhancing T-DNA expression in kenaf (Hibiscus cannabinus) J. Plant Physiol. 158: 255-260.CrossRefGoogle Scholar
  33. [33]
    Tang, W. (2003) Additional virulence genes and sonication enhance Agrobacterium tumefaciensmediated loblolly pine transformation. Plant Cell Rep. 21:555-562.CrossRefGoogle Scholar
  34. [34]
    Ananthakrishnan, G.; Xia, X.; Elman, C.; Singer, S.; Paris, H.; Gal-On, A. and Gaba, V. (2003) Shoot production in squash (Cucurbita pepo)by in vitro organogenesis. Plant Cell Rep. 21: 739-746.CrossRefGoogle Scholar
  35. [35]
    Yong, W.J.; Chun, G.X.; Wu, J.Y. and Ge, X.C. (2004) Oxidative burst, jasmonic acid biosìntesis, and taxol production induced by low-energy ultrasound in Taxus chinensis cell suspensiòn cultures. Biotechnol. Bioeng. 85: 714-721.CrossRefGoogle Scholar
  36. [36]
    Kilby, N.J. and Hunter, C.S. (1990) Repeated harvest of vacuole-located secondary product from in vitrogrown plant cells using 1.02 MHz ultrasound. Appl. Microbiol. Biotech. 33: 448-451.CrossRefGoogle Scholar
  37. [37]
    Aller, P.; Fernandez-Gomez, M.E. and Diez, J.L. (1978) RNA synthesis in root meristems of Allium cepabulbs. 1. Sonication as a method to eliminate contaminating bacteria. Zeitschrift fur Pflanzenphysiologie 89: 29-40.CrossRefGoogle Scholar
  38. [38]
    Rediske, A.M.; Rapoport, N. and Pitt, W.G. (1999) Reducing bacterial resistance to antibiotics with ultrasound. Lett. Appl. Microbiol. 28: 81-84.CrossRefGoogle Scholar
  39. [39]
    Levin, R.; Gaba, V.; Tal, B.; Hirsch, S.; DeNola, D. and Vasil, I.K. (1988) Automated plant tissue culture for mass propagation. Bio/Technol. 6: 1035-1040.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Victor Gaba
    • 1
  • K. Kathiravan
    • 2
  • S. Amutha
    • 1
  • Sima Singer
    • 1
  • Xia Xiaodi
    • 3
  • G. Ananthakrishnan
    • 4
  1. 1.Dept. of VirologyARO Volcani CenterIsrael
  2. 2.Department of BiotechnologyJamal Mohamed CollegeIndia
  3. 3.Plant Industry DivisionCSIROCanberra CityAustralia
  4. 4.Citrus Research and Education CenterUniversity of FloridaLake AlfredUSA

Personalised recommendations