Advertisement

Acoustic Characteristics Of Plant Leaves Using Ultrasonic Transmission Waves

  • Fukuhara Mikio
  • S. Dutta Gupta
  • Okushima Limi
Chapter
  • 1.6k Downloads
Part of the Focus on Biotechnology book series (FOBI, volume 6)

Keywords

Phase Velocity Attenuation Coefficient Ultrasonic Wave Acoustic Characteristic Dynamic Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Fukuhara, M. and Yamauchi, I. (1993) Temperature dependence of the elastic moduli, internal friction and acoustic wave velocity for alumina, (Y) PSZ and β’-sialon ceramics. J. Mater. Sci. 28: 4681-4688.CrossRefGoogle Scholar
  2. [2]
    Fukuhara, M. and Sampei, A. (1993) Elastic moduli and internal frictions of carbon and stainless steels as a function of temperature. Iron and Steel Inst. J. Int. 33: 508-512.CrossRefGoogle Scholar
  3. [3]
    Fukuhara, M and Sampei, A. (1994) Low-temperature elastic moduli and dilational and shear internal frictions of superconducting ceramic GdBa2Cu3O7-i. Phys. Rev. B49: 13099-13105.Google Scholar
  4. [4]
    Numata, H .and Fukuhara, M. (1997) Low-temperature elastic anomalies and heat generation of deuterated palladium. Fus. Tech. 31: 300-310.CrossRefGoogle Scholar
  5. [5]
    Fukuhara, M.; Degawa, T.; Okushima, L. and Homma, T. (2000) Propagation characteristics of leaves using ultrasonic transmission waves. Acoust. Lett. 24:70-74.Google Scholar
  6. [6]
    Fukuhara, M. (2002) Acoustic characteristics of botanical leaves using ultrasonic transmission waves. Plant Sci. 162: 521-528.CrossRefGoogle Scholar
  7. [7]
    Kinra, V. K. and Dayal, V. (1988) A new technique for ultrasonic non-destructive evaluation of thin specimen. J. Exp. Mech. 28: 288-297.CrossRefGoogle Scholar
  8. [8]
    Kinra, V. K. and Zhu, C. (1993) Time-domain ultrasonic NDE of the wave velocity of a subhalfwavelength elastic layer. J. Test. Eval. 21: 29-35.CrossRefGoogle Scholar
  9. [9]
    Wan, M.; Jiang, B. and Cao, W. (1997) Direct measurement of ultrasonic velocity of thin elastic layers. J. Acoust. Soc. Am. 101:626-628.CrossRefGoogle Scholar
  10. [10]
    Sachse, W. and Pao, Y. H. (1978) On the determination of phase and group velocities of dispersive waves in solids. J. Appl. Phys. 49: 4320-4.CrossRefGoogle Scholar
  11. [11]
    Mobley, J.; Waters, K. R.; Hall, C. S.; Marsh, J .N.; Hughes, M .S.; Brandenburger G.H. and Miller, J .G. (1999) Measurements and predictions of the phase velocity and attenuation coefficient in suspensions of elastic microspheres. J. Acoust. Soc. Am. 106: 652.-659.CrossRefGoogle Scholar
  12. [12]
    Del Gross, V. A. and Mader, C.W. (1972) Speed of sound in pure water. J. Acoust. Soc. Am. 52: 14421446.Google Scholar
  13. [13]
    Nyquist, H. (1932) Regeneration theory. Bell System Tech. J. 11: 126-147.CrossRefGoogle Scholar
  14. [14]
    McBumey, T. (1992) The relationship between leaf thickness and plant water Potential. J. Exp. Bot. 43:327-332.CrossRefGoogle Scholar
  15. [15]
    Nakamoto, K.; Oku, T.; Hayakawa, S. (1996) Photosynthetic characteristics of tea leaves growth under field conditions. Environ. Control Biol. (in Japanese) 34: 277-283.CrossRefGoogle Scholar
  16. [16]
    Fukuhara, M.; Okushima, L.; Matsuo, K. and Honma, T. (2005) Jpn. Agri. Res. Quart. (in press).Google Scholar
  17. [17]
    Fukuhara, M. and Sampei, A. (1996) Low-temperature elastic moduli and dilational and shear internal friction of polycarbonate. Jpn. J. Appl. Phys.35: 3218- 3221.CrossRefGoogle Scholar
  18. [18]
    Fukuhara, M.; Kuwano, Y.; Tsugane, A.; Yoshida, M. (1999) Determinatin of thermal degradation of volcanized rubbers using diffracted SH ultrasonic waves. J. Polym. Sci. Pt. B: Polym. Phys. 37: 497-503.CrossRefGoogle Scholar
  19. [19]
    Fukuhara, M. and Tsubouchi, T. (2003) Naphthenic hydrocarbon oils transmissible for transverse waves. Chem. Phys. Lett. 371:184-188.CrossRefGoogle Scholar
  20. [20]
    Fukuhara, M.; Yin, F.; Kawahara, K.(2004) Acoustic characteristics of high damping Mn73Cu20Ni5Fe2 alloy. Phys. Stat. Sol.(a) 201: 454-458.CrossRefGoogle Scholar
  21. [21]
    Maeda, Y. (1957) Dynamic Viscoelasticity, Polymers, In: Lecture on Experimental Chemistry (in Japanese), Vol.8, Maruzen, Tokyo; pp. 155.Google Scholar
  22. [22]
    Fukuhara, M.; Kuwano,Y. and Oguri, M. (1996) Determination of thermal degradation of heated polyvinyl chloride using diffracted SH ultrasonic waves. Jpn. J. Appl. Phys. 35: 3088-3092.CrossRefGoogle Scholar
  23. [23]
    Kuwano, Y.; Fukuhara, M.; Omura, H.; Takayama, S.(1996) Determination of thermal degradation of polypropylene using diffracted SH ultrasonic waves. The First Symposium for Polymer Analysis, Jpn. Soc. Chem. Analysis (in Japanese), Inst. Nagoya Tech.,Tokyo; pp. 155-156.Google Scholar
  24. [24]
    Fukuhara, M. and Sampei, A. (2000) Ultrasonic elastic properties of steel under tensile stress. Jpn. J. Appl. Phys. 39: 2916-2921.CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Fukuhara Mikio
    • 1
  • S. Dutta Gupta
    • 2
  • Okushima Limi
    • 3
  1. 1.Materials and Components Div., Tungaloy, Kokusai-Shinkawasaki BldSaiwaiJapan
  2. 2.Department of Agricultural and Food EngineeringIndian Institute of TechnologyIndia
  3. 3.National Institute of Rural EngineeringJapan

Personalised recommendations