Advertisement

Evaluation Of Plant Suspension Cultures By Texture Analysis

  • Yasuomi Ibaraki
Chapter
  • 1.6k Downloads
Part of the Focus on Biotechnology book series (FOBI, volume 6)

Keywords

Somatic Embryo Somatic Embryogenesis Suspension Culture Texture Analysis Cell Suspension Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ibaraki, Y. and Kurata, K. (2000) Application of image analysis to plant cell suspension cultures. Compu. Electron. Agri. 30:193-203.CrossRefGoogle Scholar
  2. [2]
    Smith, M.A.L. (1995) Image analysis for plant tissue culture and micropropagtion. In: Aitken-Christie, J.; Kozai, T. and Smith, M.A.L. (Eds.) Automation and Environmental Control in Plant Tissue Cultures. Kluwer Academic Publishers, Dordrecht, The Netherlands; pp. 145-163.CrossRefGoogle Scholar
  3. [3]
    Ibaraki, Y.; Kaneko, Y. and Kurata, K. (1998) Evaluation of embryogenic potential of cell suspension culture by texture analysis. Trans. ASAE 41: 247-252.Google Scholar
  4. [4]
    Grand d’Esnon, A.; Chee, R.; Harrell, R.C. and Cantliffe, D. J. (1989) Qualitative and quantitative evaluation of liquid tissue cultures by artificial vision. Biofutur 76:S3.Google Scholar
  5. [5]
    Smith, M.A.L.; Reid, J.F.; Hansen, A.C.; Li, Z. and Madhavi, D.L. (1995) Non-destructive machine vision analysis of pigment-producing cell cultures. J. Biotechnol. 40:1-11.CrossRefGoogle Scholar
  6. [6]
    Ibaraki, Y.; Fukakusa, M. and Kurata, K. (1995) SOMES2: Image-analysis-based somatic embryo sorter. Current Plant Science and Biotechnology in Agriculture 22: 675-680.CrossRefGoogle Scholar
  7. [7]
    Harrell, R.C.; Bieniek, M. and Cantiffe, D.J. (1992) Non-invasive evaluation of somatic embryogenesis. Biotechnol. Bioeng. 39: texture analysis 378-383.Google Scholar
  8. [8]
    Smith, M.A.L. and Spomer, L.A. (1987) Direct quantification of in vitro cell growth through image analysis. In Vitro Cell. Dev. Biol.-Plant 23: 67-74.CrossRefGoogle Scholar
  9. [9]
    Olofsdotter, M. (1993) Image processing: a non-destructive methods for measuring growth in cell and tissue culture. Plant Cell Rep. 12: 216-219.CrossRefGoogle Scholar
  10. [10]
    Anthony, P.; Davey, M.R.; Power, J.B.; Washington, C. and Lowe, K.C. (1994) Image analysis assessments of perfluorocarbon- and surfactant- enhanced protoplast division. Plant Cell Tissue Org. Cult. 38:39-43.CrossRefGoogle Scholar
  11. [11]
    Ibaraki, Y. and Kurata, K. (1997) Image analysis based quantification of cells in suspension cultures for producing somatic embryos. Environ. Control Biol. 35: 63-70.CrossRefGoogle Scholar
  12. [12]
    Shono, H.; Okada, M. and Higuchi, S. (1994) Texture analysis of photographic images from close distance: An application to estimate species composition in a mixed pasture field (in Japanese with English abstract). J. Agri. Meteorol. 49: 227-235.CrossRefGoogle Scholar
  13. [13]
    Galloway, M.M. (1975) Texture analysis using grey level run lengths. Computer Graphics Image Processing 4: 172-179.CrossRefGoogle Scholar
  14. [14]
    Haralick, R. M.; Shanmugam, K. and Dinstein, I. (1973) Textural features for imaging classification. IEEE Trans. Sys. Man Cybernet. SMC-3: 610-621.CrossRefGoogle Scholar
  15. [15]
    Shearer, S.A. and Holmes, R.G. (1990) Plant identification using colour co-occurrence matrixes. Trans. ASAE 38: 2037-2044.Google Scholar
  16. [16]
    Tuceryan, M. and Jain, A.K. (1998) Texture analysis. In: Chen, C.H.; Pau, L.F. and Wang, P.S.P. (Eds.) The Handbook of Pattern Recognition and Computer Vision. World Scientific Publishing Co., Hackensack, NJ; pp. 207-248.Google Scholar
  17. [17]
    Ojala, T. and Pietikäinen, M. Texture analysis. In: Fisher, R.B. (Ed.) CV online: The evolving, Distributed, Non-proprietary, On-Line Compendium of Computer Vision (http://homepages.inf.ed.ac.uk/rbf/CVonline /LOCAL_COPIES/OJALA1/texclas.htm ).Google Scholar
  18. [18]
    Sayeed, M.S.; Whittaker, A.D. and Kehtarnavaz, N. D. (1995) Snack quality evaluation method based on image feature and neural network prediction. Trans. ASAE 38: 1239-1245.CrossRefGoogle Scholar
  19. [19]
    Ghate, S.R.; Evans, M.D.; Kvien, C.K. and Rucker K.S. (1993) Maturity detection in peanuts (Arachis hypogaea L.) using machine vision. Trans. ASAE 36: 1941-1947.CrossRefGoogle Scholar
  20. [20]
    Guisado, M.A.P. and Gómez-Allende, D.M. (2001) Wood texture analysis by combining the connected elements histogram and artificial neural networks. In: Mira, J. and Prieto, A. (Eds.) Bio-Inspired Applications of Connectionism-IWANN 2001.Springer-Verlag, Heidelberg; pp.160-167.CrossRefGoogle Scholar
  21. [21]
    Shono, H. (1995) A new method of image measurement of leaf tip angle based on textural feature and a study of its availability (in Japanese with English abstract). Environ. Control Biol. 33:1970-207.CrossRefGoogle Scholar
  22. [22]
    Murase, H.; Honami, N. and Nishiura, Y. (1994) A neural network estimation technique for plant water status using textural features of pictorial data of plant canopy. Acta Hort. 339: 255-262.Google Scholar
  23. [23]
    Rousselle C.; Paillasson, S.; Robert-Nicoud, M. and Ronot, X. (1999) Chromatin texture analysis in living cells. Histochemical J. 31:63-70.CrossRefGoogle Scholar
  24. [24]
    Zhang, Y.; Zhu, H.; Ferrari, R.; Wei, X.; Eliasziw, M.; Metz, L.M. and Mitchell, R. (2003) Texture analysis of MR images of minocycline treated MS patients. In: Elli, R.E. and Peters T.M. (Eds.) MICCAI 2003, LNCS 2878. Springer-Verlag, Heidelberg; pp. 786-793.Google Scholar
  25. [25]
    Lespessailles, E.; Roux, J.P.; Benhamou, C.L.; Arlot, M.E.; Eynard, E.; Harba, R.; Padnou, C. and Meunier, P.J. (1998) Fractal analysis of bone texture on os calcis radiographs compared with trabecular microarchitecture analysed by histomorphometry. Calcified Tissue Int. 63: 121-125.CrossRefGoogle Scholar
  26. [26]
    Sutton, R. and Hall, E.L. (1972) Texture measures for automatic classification of pulmonary disease. IEEE Trans. Comput. C-21: 667-676.CrossRefGoogle Scholar
  27. [27]
    Kieran, P.M.; MacLoughlin, P.F. and Malone, D.M. (1997) Plant cell suspension cultures: some engineering considerations. J. Biotechnol. 59: 39-52.CrossRefGoogle Scholar
  28. [28]
    Stirn, S.; Hopstock, A. and Lorz, H. (1994) Bioreactor cultures of embryogenic suspensions of barley (Hordeum vulgare L.) and maize (Zea mays L.). J. Plant Physiol. 144: 209-214.CrossRefGoogle Scholar
  29. [29]
    Molle, F.; Dupuis, J.M.; Ducos, J.P.; Anselm, A.; Crolus-Savidan, I.; Petiard, Y. and Freyssinet, G. (1993) In: Redenbaugh, K. (Ed.) Synseeds. CRC press, Boca Raton; pp. 257-287.Google Scholar
  30. [30]
    Ibaraki, Y. and Kurata, K. (2001) Automation of somatic embryo production. Plant Cell Tissue Org. Cult. 65: 179-199.CrossRefGoogle Scholar
  31. [31]
    Yeung, E.C. (1995) Structural and developmental patterns in somatic embryogenesis. In: Thorpe, T.A. (Ed.) In Vitro Embryogenesis in Plants. Kluwer Academic Publishers, Dordrecht, The Netherlands; pp. 205-247.CrossRefGoogle Scholar
  32. [32]
    Smith, S.M. and Street, H.E. (1974) The decline of embryogenic potential as callus and suspension cultures of carrot (Daucus carota L.) are serially subcultured. Ann. Bot. 38: 223-241.CrossRefGoogle Scholar
  33. [33]
    Zheng, Q.; Dessai, A.P. and Parkash, C.S. (1996) Rapid and repetitive plant regeneration in sweet potato via somatic embryogenesis. Plant Cell Rep.15: 381-385.CrossRefGoogle Scholar
  34. [34]
    Hirvonen, J. and Ojamo, H. (1988) Visual sensors in tracking tissue growth. Acta Hort. 230: 245-251.CrossRefGoogle Scholar
  35. [35]
    van Boxtel, J. and Berthouly, M. (1996) High frequency somatic embryogenesis from coffee leaves. Plant Cell Tissue Org. Cult. 44: 7-17.CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Yasuomi Ibaraki
    • 1
  1. 1.Department of Biological ScienceYamaguchi UniversityYamaguchi-shiJapan

Personalised recommendations