Design, Development, And Applications Of Mist Bioreactors For Micropropagation And Hairy Root Culture

  • Melissa J. Towler
  • Yoojeong Kim
  • Barbara E. Wyslouzil
  • Melanie J. Correll
  • Pamela J. Weathers
Part of the Focus on Biotechnology book series (FOBI, volume 6)


Hairy Root Hairy Root Culture Secondary Metabolite Production Bubble Column Reactor Artemisinin Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Weathers, P.J. and Zobel, R.W. (1992) Aeroponics for the cultures of organisms, tissues and cells. Biotech. Adv. 10: 93-115.Google Scholar
  2. [2]
    Friberg, J.A.; Weathers, P.J. and Gibson, D.G. (1992) Culture of amebocytes in a nutrient mist bioreactor. In Vitro Cell. Dev. Biol.-Plant 28A: 215-217.Google Scholar
  3. [3]
    Kim, Y.; Wyslouzil, B.E. and Weathers, P.J. (2002) Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell. Dev. Biol.-Plant 38: 1-10.Google Scholar
  4. [4]
    Perry, R.H. and Green, D.W. (1997) Perry’s Chemical Engineer’s Handbook, 7th ed., McGraw-Hill, New York; pp.14-82.Google Scholar
  5. [5]
    Weathers, P.J.; Wyslouzil, B.E.; Wobbe, K.K.; Kim, Y.J. and Yigit, E. (1999) Workshop on bioreactor technology. The biological response of hairy roots to O2 levels in bioreactors. In Vitro Cell. Dev. Biol.Plant 35: 286-289.Google Scholar
  6. [6]
    Tisserat, B.; Jones, D. and Galletta, P.D. (1993) Construction and use of an inexpensive in vitro ultrasonic misting system. Hort. Technol. 3: 75-78.Google Scholar
  7. [7]
    Woo, S.H. and Park, J.M. (1993) Multiple shoot culture of Dianthus caryophyllus using mist culture system. Biotechnol. Techn. 7: 697-702.Google Scholar
  8. [8]
    Buer, C.S.; Correll, M.J.; Smith, T.C.; Towler, M.J.; Weathers, P.J.; Nadler, M.; Seaman, J. and Walcerz, D. (1996) Development of a nontoxic acoustic window nutrient-mist bioreactor and relevant growth data. In Vitro Cell. Dev. Biol.-Plant 32: 299-304.Google Scholar
  9. [9]
    Chatterjee, C.; Correll, M.J.; Weathers, P.J.; Wylslouzil, B.E. and Walcerz, D.B. (1997) Simplified acoustic window mist bioreactor. Biotechnol. Techn. 11: 155-158.Google Scholar
  10. [10]
    Correll, M.J.; Wu, Y. and Weathers, P.J. (2001) Controlling hyperhydration of carnations (Dianthus caryophyllus L.) grown in a mist reactor. Biotechnol. Bioeng. 71: 307-314.Google Scholar
  11. [11]
    Correll, M.J. and Weathers, P.J. (2001) One-step acclimatization of plantlets using a mist reactor. Biotechnol. Bioeng. 73: 253-258.PubMedGoogle Scholar
  12. [12]
    Correll, M.J. and Weathers, P.J. (2001) Effects of light, CO2 and humidity on carnation growth, hyperhydration and cuticular wax development in a mist reactor. In Vitro Cell. Dev. Biol.- Plant 37: 405-413.Google Scholar
  13. [13]
    Bais, H.P.; Suresh, B.; Raghavarao, K.S.M.S. and Ravishankar, G.A. (2002) Performance of hairy root cultures of Cichorium intybus L. in bioreactors of different configurations. In Vitro Cell. Dev. Biol.-Plant 38: 573-580.Google Scholar
  14. [14]
    Ilan, A. and Khayat, E. (1997) An overview of commercial and technological limitations to marketing of micropropagated plants. Acta Hort. 447: 642-648.Google Scholar
  15. [15]
    DeBergh, P.C. and Maene L.J. (1981) A scheme for commercial micropropagation of ornamental plants by tissue culture. Sci. Hort. 14: 336-345.Google Scholar
  16. [16]
    Cassells, A.C. (1997) Pathogen and microbial contamination management in micropropagation - an overview. In: Cassels, A.C. (Ed.) Pathogen and Microbial Contamination Management in Micropropagation. Kluwer Academic Publishers, Dordrecht, The Netherlands; pp. 1-14.Google Scholar
  17. [17]
    Sutter, E.G.; Shackel, K. and Diaz, J.C. (1992) Acclimatization of tissue cultured plants. Acta Hort. 314: 115-119.Google Scholar
  18. [18]
    Hempel, M. (1993) From micropropagation to “microponics”. Practical Hydroponics International, November/December: 21-23.Google Scholar
  19. [19]
    Zobel, R.W. (1987) Gaseous compounds of soybean tissue culture: carbon dioxide and ethylene evolution. Environ. Exp. Bot. 27: 223-226.Google Scholar
  20. [20]
    Lee, C.W.T. and Shuler, M.L. (1991) Different shake flask closures alter gas phase composition and ajmalicine production in Catharanthus roseus cell suspensions. Biotechnol. Techn. 5: 173-178.Google Scholar
  21. [21]
    Kozai, T. (1991) Photoautotrophic micropropagation. In Vitro Cell. Dev. Biol.- Plant 27: 47-51.Google Scholar
  22. [22]
    Ziv, M. (1991) Vitrification: morphological and physiological disorders of in vitro plants. In: DeBerge, P.C. and Zimmerman, R.H. (Eds.) Micropropagation. Kluwer Academic Publishers, Dordrecht, The Netherlands; pp. 45-69.Google Scholar
  23. [23]
    Kirdmanee, C.; Kitaya, Y. and Kozai, T. (1995) Effects of CO2 enrichment and supporting material in vitro on photoautotrophic growth of Eucalyptus plantlets in vitro and ex vitro. In Vitro Cell. Dev. Biol.-Plant 31: 144-149.Google Scholar
  24. [24]
    Diaz-Perez J.C.; Shackel K.A. and Sutter E.G. (1995) Effects of in vitro-formed roots and acclimatization on water status and gas exchange of tissue cultured apple shoots. J. Am. Soc. Hort. Sci. 120: 435-440.Google Scholar
  25. [25]
    Lowe, K.C.; Anthony, P.; Power, J.B. and Davey, M.R. (2003) Invited review: novel approaches for regulating gas supply to plant systems in vitro: application and benefits of artificial gas carriers. In Vitro Cell. Dev. Biol.- Plant 39: 557-566.Google Scholar
  26. [26]
    Ziv, M. (2000) Bioreactor technology for plant micropropagation. In: Janick, J. (Ed.) Horticultural Reviews. John Wiley and Sons, New York; pp.1-30.Google Scholar
  27. [27]
    Nairn, B.J.; Furneax, R.H. and Stevenson, T.T. (1995) Identification of an agar constituent responsible for hydric control in micropropagation of radiata pine. Plant Cell Tissue Org. Cult. 43: 1-11.Google Scholar
  28. [28]
    Kanechi, M.; Ochi, M.; Abe, M.; Inagaki, N. and Mackawa, S. (1998) The effects of carbon dioxide enrichment, natural ventilation, and light intensity on growth, photosynthesis, and transpiration of cauliflower plantlets cultured in vitro photoautotrophically and photomixotrophically. J. Am. Soc. Hort. Sci. 123: 176-181.Google Scholar
  29. [29]
    Solarova, J. and Pospisilova, J. (1997) Effects of carbon dioxide enrichment during in vitro cultivation and acclimation to ex vitro conditions. Biol. Plant. 39: 23-30.Google Scholar
  30. [30]
    Pospisilova, J.; Ticha, I.; Kadlecek, P.; Haisel, D. and Plzakova, S. (1999) Acclimatization of micropropagated plants to ex vitro conditions. Biol. Plant. 42: 481-497.Google Scholar
  31. [31]
    Fila, G.; Ghashghaie, J.; Hoarau, J. and Cornic, G. (1998) Photosynthesis, leaf conductance, and water relations of in vitro cultured grapevine rootstock in relation to acclimatization. Physiol. Plant. 102: 411-418.Google Scholar
  32. [32]
    Kurata, K.; Ibaraki, Y. and Goto, E. (1991) System for micropropagation by nutrient mist supply. Am. Soc. Agricult. Engineers 34: 621-624.Google Scholar
  33. [33]
    Liu, C.Z.; Guo, C.; Wang, Y.C. and Ouyang, F. (2002) Comparison of various bioreactors on growth and artemisinin biosynthesis of Artemisia annua L. shoot cultures. Process Biochem. 39: 45-49.Google Scholar
  34. [34]
    Weathers, P.J. and Giles, K.L. (1988) Regeneration of plants using nutrient mist culture. In Vitro Cell. Dev. Biol.- Plant. 24: 727-732.Google Scholar
  35. [35]
    Cheetham, R.D.; Weathers, P.; DiIorio, A.; Glubiak, M. and Mikloiche, C. (1990) In vitro growth of a recalcitrant male asparagus cultivar. Abstracts VII Intl. Congress on Plant Tissue and Cell Culture. Amsterdam, The Netherlands, 24-29 June, 94.Google Scholar
  36. [36]
    Cheetham, R.D.; Mikloiche, C.; Glubiak, M. and Weathers, P. (1992) Micropropagation of a recalcitrant male asparagus clone (MD 22-8). Plant Cell Tissue Org. Cult. 31: 15-19.Google Scholar
  37. [37]
    Weathers, P.J.; Cheetham, R.D. and Giles, K.L. (1988) Dramatic increases in shoot number and lengths for Musa, Cordyline, and Nephrolepis using nutrient mists. Acta Hort. 230: 39-44.Google Scholar
  38. [38]
    Hao, Z.; Ouyang, F.; Geng, Y.; Deng, X.; Hu, Z. and Chen, Z. (1998) Propagation of potato tubers in a nutrient mist bioreactor. Biotechnol. Techn. 12: 641-644.Google Scholar
  39. [39]
    Mavituna, F. and Park, J.M. (1986) Improvements relating to biotransformation reactions. International Patent Application # PCT/GB85/00508.Google Scholar
  40. [40]
    Honda, H.; Liu, C. and Kobayashi, T. (2001) Large-scale plant micropropagation. Adv. Biochem. Eng. Biotechnol. 72: 157-182.Google Scholar
  41. [41]
    Balandrin, M.F.; Klocke, J.A.; Wurtele, E.S. and Bollinger, W.H. (1985) Natural plant chemicals: sources of industrial and medicinal materials. Science 228: 1154-1160.PubMedGoogle Scholar
  42. [42]
    Banerjee, S.; Rahman, L.; Uniyal, G.C. and Ahuja, P.S. (1998) Enhanced production of valepotriates by Agrobacterium rhizogenes induced hairy root cultures of Valeriana wallichii DC. Plant Sci. 131: 203-208.Google Scholar
  43. [43]
    Kittipongpatana, N.; Hock, R.S. and Porter, J.R. (1998) Production of solasodine by hairy root, callus, and cell suspension cultures of Solanum aviculare. Forst. Plant Cell Tissue Org. Cult. 52: 133-143.Google Scholar
  44. [44]
    Flores, H.E. and Curtis, W.R. (1992) Approaches to understanding and manipulating the biosynthetic potential of plant roots. Ann. NY Acad. Sci. 665: 188-209.PubMedGoogle Scholar
  45. [45]
    Kim, Y.; Wyslouzil, B.E. and Weathers, P.J. (2001) A comparative study of mist and bubble column reactors in the in vitro production of artemisinin. Plant Cell Rep. 20: 451-455.Google Scholar
  46. [46]
    Souret, F.F.; Kim, Y.J.; Wyslouzil, B.E.; Wobbe, K.K. and Weathers, P.J. (2003) Scale-up of Artemisia annua L. hairy roots cultures produces complex patterns of terpenoid gene expression. Biotechnol. Bioeng. 83: 653-667.PubMedGoogle Scholar
  47. [47]
    Palazon, J.; Mallol, A.; Eibl, R.; Lettenbauer, C.; Cusido, R.M. and Pinol, M.T. (2003) Growth and ginsenoside production in hairy root cultures of Panax ginseng using a novel bioreactor. Planta Medica 69: 344-349.PubMedGoogle Scholar
  48. [48]
    Flores, H.E.; Yao-Rem, D.; Cuello, J.L.; Maldonado-Mendoza, I.E. and Loyola-Vargas, V.M. (1993) Green roots: photosynthesis and photoautotrophy in an underground plant organ. Plant Physiol. 101: 363-371.PubMedPubMedCentralGoogle Scholar
  49. [49]
    Taya, M.; Sato, H.; Masahiro, K. and Tone, S. (1994) Characteristics of pak-bung green hairy roots cultivated under light irradiation. J. Ferment. Bioeng. 78: 42-48.Google Scholar
  50. [50]
    Mandoli, D.F. and Briggs, W.R. (1982) Optical properties of etiolated plant tissues. Proc. Natl. Acad. Sci. 79: 2902-2906.PubMedGoogle Scholar
  51. [51]
    Mandoli, D.F. and Briggs, W.R. (1983) Physiology and optics of plant tissues. What’s New in Plant Physiology 14: 13-16.Google Scholar
  52. [52]
    McKelvey, S.A.; Gehrig, J.A.; Holar, K.A. and Curtis, W.R. (1993) Growth of plant root cultures in liquid- and gas-dispersed reactor environments. Biotechnol. Prog. 9: 317-322.PubMedGoogle Scholar
  53. [53]
    Curtis, W.R. (1993) Cultivation of roots in bioreactors. Curr. Opin. Biotechnol. 4: 205-210.PubMedGoogle Scholar
  54. [54]
    Curtis, W.R. 2000) Hairy roots, bioreactor growth. In: Spier, R.E. (Ed.) Encyclopedia of Cell Biotechnology. John Wiley and Sons, New York; pp. 827-841.Google Scholar
  55. [55]
    Kim, Y.J.; Weathers, P.J. and Wyslouzil, B.E. (2002a) Growth of Artemisia annua hairy roots in liquid-and gas-phase reactors. Biotechnol. Bioeng. 80: 454-464.PubMedGoogle Scholar
  56. [56]
    Ramakrishnan, D.; Salim, J. and Curtis, W.R. (1994) Inoculation and tissue distribution in pilot-scale plant root culture bioreactors. Biotechnol. Techn. 8: 639-644.Google Scholar
  57. [57]
    Wilson, D.G. (1997) The pilot-scale cultivation of transformed roots. In: Doran, P.M. (Ed.) Hairy Roots: culture and applications. Gordon and Breach / Harwood Academic, UK; pp. 179-190.Google Scholar
  58. [58]
    Towler, M.J. and Weathers, P.J. (2003) Adhesion of plant roots to poly-L-lysine coated polypropylene substrates. J. Biotechnol. 101:147-155.PubMedGoogle Scholar
  59. [59]
    Kim, Y.J. (2001) Assessment of bioreactors for transformed root cultures. Ph.D thesis, Worcester Polytechnic Institute, Worcester, MA.Google Scholar
  60. [60]
    DiIorio, A.A.; Cheetham, R.D. and Weathers, P.J. (1992) Growth of transformed roots in a nutrient mist bioreactor: reactor performance and evaluation. Appl. Microbiol. Biotechnol. 37: 457-462.Google Scholar
  61. [61]
    Wyslouzil, B.E.; Waterbury, R.G. and Weathers, P.J. (2000) The growth of single roots of Artemisia annua in nutrient mist bioreactors. Biotechnol. Bioeng. 70:143-150.PubMedGoogle Scholar
  62. [62]
    Weathers, P.J. and Wyslouzil, B.E. (2000) Bioreactors, mist. In: Spier, R.E. (Ed.) Encyclopedia of Cell Technology. John Wiley and Sons, New York; pp. 224-230.Google Scholar
  63. [63]
    Biondi, S.; Lenzi, C.; Baraldi, R. and Bagni, N. (1997) Hormonal effects on growth and morphology of normal and hairy roots of Hyoscyamus muticus. J. Plant Growth Regul.16: 159-167.Google Scholar
  64. [64]
    Weathers, P.J.; Bunk, G. and McCoy, M. (2005) The effect of phytohormones on growth and artemisinin production in Artemisia annua hairy roots. In Vitro Cell. Dev. Biol.- Plant, accepted for publication.Google Scholar
  65. [65]
    Sung, L.S. and Huang, S.Y. (2000) Headspace ethylene accumulation in Stizolobium hassjoo hairy root culture producing L-3,4-dihydroxyphenylalanine. Biotechnol. Lett. 22: 875-878.Google Scholar
  66. [66]
    Wyslouzil, B.E.; Whipple, M.; Chatterjee, C.; Walcerz, D.B.; Weathers, P.J. and Hart, D.P. (1997) Mist deposition onto hairy root cultures: aerosol modeling and experiments. Biotechnol. Prog. 13: 185-194.PubMedGoogle Scholar
  67. [67]
    Crawford, M. (1976) Air Pollution Control Theory. McGraw-Hill, New York; pp.424-433.Google Scholar
  68. [68]
    Friedlander, S.K. (1977) In: Smoke, Dust and Haze: Fundamentals of Aerosol Behavior. Wiley, New York.Google Scholar
  69. [69]
    Liu, C.Z.; Wang, Y.C.; Zhao, B.; Guo, C.; Ouyang, F.; Ye, H.C. and Li, G.F. (1999) Development of a nutrient mist bioreactor for growth of hairy roots. In Vitro Cell. Dev. Biol.- Plant 35: 271-274.Google Scholar
  70. [70]
    Schroder, R.; Gertner, F.; Steinbrenner, B.; Knoop, B. and Beiderbeck, R. (1989) Viability factors in plant suspension cultures – some properties. J. Plant Physiol. 135: 422-427.Google Scholar
  71. [71]
    Matsubayashi, Y. and Sakagami, Y. (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc. Natl. Acad. Sci. USA 93: 76237627.Google Scholar
  72. [72]
    Weathers, P.J.; DeJesus-Gonzalez, L.; Kim, Y.J.; Souret, F.F. and Towler, M. (2004) Alteration of biomass and artemisinin production in A. annua hairy roots by media sterilization method and sugars. Plant Cell Rep. DOI: 10.1007/s00299-004-0837-4.Google Scholar
  73. [73]
    Weathers, P.J.; DiIorio, A.A. and Cheetham, R.D. (1989) A bioreactor for differentiated plant tissues. In: Proceedings of the Biotech USA Conference, San Francisco, CA, 247-256.Google Scholar
  74. [74]
    Wilson, P.D.G.; Hilton, M.G.; Meehan, P.T.H.; Waspe, C.R. and Rhodes, M.J.C. (1990) The cultivation of transformed roots from laboratory to pilot plant. In: Nijkamp, H.J.J.; van der Plas, L.H.W. and van Aartrijk, J. (Eds.) Progress in Plant Cellular and Molecular Biology. Kluwer Academic Publishers, Dordrecht, The Netherlands; pp. 700-705.Google Scholar
  75. [75]
    Nuutila, A.M.; Lindqvist, A.S. and Kauppinen, V. (1997) Growth of hairy root cultures of strawberry (Fragaria x. ananassa Duch.) in three different types of bioreactors. Biotechnol. Techn. 11: 363-366.Google Scholar
  76. [76]
    Whitney, P.J. (1990) Novel bio-reactors for plant root organ cultures. Abstracts VII Intl. Cong. Plant Tissue Cell Cult., Amsterdam, The Netherlands; Abstract C4-19, 342.Google Scholar
  77. [77]
    Whitney, P. (1992) Novel bioreactors for the growth of roots transformed by Agrobacterium rhizogenes. Enz. Microbiol. Technol. 14: 13-17.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Melissa J. Towler
    • 1
  • Yoojeong Kim
    • 2
  • Barbara E. Wyslouzil
    • 3
  • Melanie J. Correll
    • 4
  • Pamela J. Weathers
    • 1
  1. 1.Department of Biology/BiotechnologyWorcester Polytechnic InstituteWorcesterUSA
  2. 2.Department of Chemical EngineeringWorcester Polytechnic InstituteWorcesterUSA
  3. 3.Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityOhioUSA
  4. 4.Agricultural and Biological Engineering DepartmentUniversity of FloridaGainesvilleUSA

Personalised recommendations