Bioreactor Engineering For Recombinant Protein Production Using Plant Cell Suspension Culture

Part of the Focus on Biotechnology book series (FOBI, volume 6)


Plant Cell Culture Recombinant Protein Production Tobacco Cell Culture Plant Cell Suspension Culture Hydrodynamic Shear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Gomord, V. and Faye, L. (2004) Posttranslational modification of therapeutic proteins in plants. Curr. Opin. Plant Biol. 7: 171-181.PubMedGoogle Scholar
  2. [2]
    James, E. and Lee, J.M. (2001) The production of foreign proteins from genetically modified plant cells. Adv. Biochem. Eng. Biotechnol. 72: 127-156.PubMedGoogle Scholar
  3. [3]
    Crawford, K.M. and Zambryski, P.C. (1999) Plasmodesmata signaling: many roles, sophisticated statutes. Curr. Opin. Plant Biol. 2: 382-387.PubMedGoogle Scholar
  4. [4]
    Doran, P.M. (2000) Foreign protein production in plant tissue cultures. Curr. Opin. Biotechnol. 11:199 204.PubMedGoogle Scholar
  5. [5]
    Shin, Y.J.; Hong, S.Y.; Kwon, T.H.; Jang, Y.S. and Yang, M.S. (2003) High level of expression of recombinant human granulocyte-macrophage colony stimulating factor in transgenic rice cell suspension culture. Biotechnol. Bioeng. 82: 778-783.PubMedGoogle Scholar
  6. [6]
    Firek, S.; Draper, J.; Owen, M.R.; Gandecha, A.; Cockburn, B. and Whitelam, G.C. (1993) Secretion of a functional single-chain Fv protein in transgenic tobacco plants and cell suspension cultures. Plant Mol. Biol. 23: 861-870.PubMedGoogle Scholar
  7. [7]
    Fischer, R.; Liao, Y.C. and Drossard, J. (1999) Affinity-purification of a TMV-specific recombinant full-size antibody from a transgenic tobacco suspension culture. J. Immunol. Methods 226: 1-10.PubMedGoogle Scholar
  8. [8]
    Sharp, J.M. and Doran, P.M. (2001) Characterization of monoclonal antibody fragments produced by plant cells. Biotechnol. Bioeng. 73: 338-346.PubMedGoogle Scholar
  9. [9]
    Xu, H.; Montoya, F.U.; Wang, Z.; Lee, J.M.; Reeves, R.; Linthicum, D.S. and Magnuson, N.S. (2002) Combined use of regulatory elements within the cDNA to increase the production of a soluble mouse single-chain antibody, scFv, from tobacco cell suspension cultures. Protein Expr. Purif. 24: 384-394.PubMedGoogle Scholar
  10. [10]
    Smith, M.L.; Mason, H.S. and Shuler, M.L. (2002) Hepatitis B surface antigen (HBsAg) expression in plant cell culture: Kinetics of antigen accumulation in batch culture and its intracellular form. Biotechnol. Bioeng. 80: 812-822.PubMedGoogle Scholar
  11. [11]
    Magnuson, N.S.; Linzmaier, P.M.; Reeves, R.; An, G.; HayGlass, K. and Lee, J.M. (1998) Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture. Protein Expr. Purif. 13: 45-52.PubMedGoogle Scholar
  12. [12]
    Kwon, T.H.; Seo, J.E.; Kim, J.; Lee, J.H.; Jang, Y.S. and Yang, M.S. (2003) Expression and secretion of the heterodimeric protein interleukin-12 in plant cell suspension culture. Biotechnol. Bioeng. 81: 870 875.PubMedGoogle Scholar
  13. [13]
    James, E.A.; Wang, C.; Wang, Z.; Reeves, R.; Shin, J.H.; Magnuson, N.S. and Lee, J.M. (2000) Production and characterization of biologically active human GM-CSF secreted by genetically modified plant cells. Protein Expr. Purif. 19: 131-138.PubMedGoogle Scholar
  14. [14]
    Francisco, J.A.; Gawlak, S.L.; Miller, M.; Bathe, J.; Russell, D.; Chace, D.; Mixan, B.; Zhao, L.; Fell, H.P. and Siegall, C.B. (1997) Expression and characterization of bryodin 1 and a bryodin 1-based single-chain immunotoxin from tobacco cell culture. Bioconjug. Chem. 8: 708-713.PubMedGoogle Scholar
  15. [15]
    Terashima, M.; Murai, Y.; Kawamura, M.; Nakanishi, S.; Stoltz, T.; Chen, L.; Drohan, W.; Rodriguez, R.L. and Katoh, S. (1999) Production of functional human alpha 1-antitrypsin by plant cell culture. Appl. Microbiol. Biotechnol. 52: 516-523.PubMedGoogle Scholar
  16. [16]
    Trexler, M.M.; McDonald, K.A. and Jackman, A.P. (2002) Bioreactor production of human alpha(1)antitrypsin using metabolically regulated plant cell cultures. Biotechnol. Prog. 18: 501-508.PubMedGoogle Scholar
  17. [17]
    Fischer, R.; Emans, N.; Schuster, F.; Hellwig, S. and Drossard, J. (1999) Towards molecular farming in the future: using plant-cell-suspension cultures as bioreactors. Biotechnol. Appl. Biochem. 30 (Pt 2): 109-112.PubMedGoogle Scholar
  18. [18]
    Kieran, P.M. (2001) Bioreactor design for plant cell suspension cultures. In: Cabral, J.; Mota, M. and Tramper, J. (Eds.) Multiphase bioreactor design. Taylor and Francis, London; pp. 391-426.Google Scholar
  19. [19]
    Doran, P.M. (1999) Design of mixing systems for plant cell suspensions in stirred reactors. Biotechnol. Prog. 15: 319-335.PubMedGoogle Scholar
  20. [20]
    Wetzstein, H. and He, Y. (2000) Anatomy of plant cells. In: Spier, R (Ed.), Encyclopedia of cell technology. Wiley, New York; pp. 24-31.Google Scholar
  21. [21]
    Kwon, T.; Kim, Y.; Lee, J. and Yang, M. (2003) Production and secretion of biologically active human granulocyte-macrophage colony stimulating factor in transgenic tomato suspension cultures. Biotechnol. Letters 25: 1571-1574.Google Scholar
  22. [22]
    Kwon, S.; Jo, S.; Lee, O.; Choi, S.; Kwak, S. and Lee, H. (2003) Transgenic ginseng cell lines that produce high levels of a human lactoferrin. Planta Medica 69: 1005-1008.PubMedGoogle Scholar
  23. [23]
    Liu, S.; Bugos, R.C.; Dharmasiri, N. and Su, W.W. (2001) Green fluorescent protein as a secretory reporter and a tool for process optimization in transgenic plant cell cultures. J. Biotechnol. 87: 1-16.PubMedGoogle Scholar
  24. [24]
    Su, W.; Lei, F. and Su, L. (1993) Perfusion strategy for rosmarinic acid production by Anchusa officinalis. Biotechnol. Bioeng. 42: 884-890.PubMedGoogle Scholar
  25. [25]
    Hibino, K. and Ushiyama, K. (1999) Commercial production of ginseng by plant tissue culture technology. In: Far, T.; Singh, G. and Curtis, W. (Eds.) Plant Cell and Tissue Culture for the Production of Food Ingredients. Kluwer Academic Publisher, New York; pp. 215-224.Google Scholar
  26. [26]
    Chattopadhyay, S.; Farkya, S.; Srivastava, A. and Bisaria, V. (2002) Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnol. Bioproc. Eng. 7: 138 149.Google Scholar
  27. [27]
    KeEler, M.; ten Hoopen, H. and Furusaki, S. (1999) The effect of aggregate size on the production of ajmalicine and tryptamine in Catharanthus roseus suspension culture. Enz. Microbial. Technol. 24: 308 315.Google Scholar
  28. [28]
    Su, W. (1995) Bioprocessing technology for plant cell suspension cultures. Appl. Biochem. Biotechnol. 50: 189-230.Google Scholar
  29. [29]
    Danna, K. (2001) Production of cellulases in plants for biomass conversion. Recent Adv. in Phytochemistry 35: 205-231.Google Scholar
  30. [30]
    Cosgrove, D.J. (1997) Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9: 1031-1041.PubMedPubMedCentralGoogle Scholar
  31. [31]
    Vissenberg, K.; Feijo, J.A.; Weisenseel, M.H. and Verbelen, J.P. (2001) Ion fluxes, auxin and the induction of elongation growth in Nicotiana tabacum cells. J. Exp. Bot. 52: 2161-2167.PubMedGoogle Scholar
  32. [32]
    Joubes, J.; De Schutter, K.; Verkest, A.; Inze, D. and De Veylder, L. (2004) Conditional, recombinasemediated expression of genes in plant cell cultures. Plant J. 37: 889-896.PubMedGoogle Scholar
  33. [33]
    Curtis, W. and Emery, A. (1993) Plant cell suspension culture rheology. Biotechnol. Bioeng. 42: 520 526.PubMedGoogle Scholar
  34. [34]
    Su, W. and Arias, R. (2003) Continuous perfusion plant cell culture: Bioreactor characterization and secreted enzyme production. J. Biosci. Bioeng. 95: 13-20.PubMedGoogle Scholar
  35. [35]
    Kieran, P.M.; MacLoughlin, P.F. and Malone, D.M. (1997) Plant cell suspension cultures: some engineering considerations. J. Biotechnol. 59: 39-52.PubMedGoogle Scholar
  36. [36]
    Doran, P. (1993) Design of reactors for plant cells and organs. Adv. Biochem. Eng. Biotechnol. 48:115 168.Google Scholar
  37. [37]
    Abdullah, M.; Ariff, A.; Marziah, M.; Ali, A. and Lajis, N. (2000) Strategies to overcome foaming and wall growth during the cultivation of Morinda elliptica cell suspension culture in a stirred-tank bioreactor. Plant Cell Tissue Org. Cult. 60: 205-212.Google Scholar
  38. [38]
    Wongsamuth, R. and Doran, P. (1997) The filtration properties of Atropa belladonna plant cell suspensions; effect of hydrodynamic shear and elevated carbon dioxide levels on culture and filtration properties. J. Chem. Technol. Biotechnol. 11/29/2007 1:53PM69: 15-26.Google Scholar
  39. [39]
    Howell, J.; Chi, C. and Pawlowsky, U. (1972) Effect of wall growth on scale-up problems and dynamic operating characteristics of the biological reactor. Biotechnol. Bioeng. 14: 253-265.Google Scholar
  40. [40]
    Kawase, Y. and Moo-Young, M. (1990) The effect of antifoam agents on mass transfer in bioreactors. Bioprocess Eng. 5: 169-173.Google Scholar
  41. [41]
    Meijer, J.; ten Hoopen, H.; Luyben, K. and Libbenga, K. (1993) Effects of hydrodynamic stress on cultured plant cells: A literature survey. Enz. Microbial Technol. 15: 234-238.Google Scholar
  42. [42]
    Kieran, P.M.; Malone, D.M. and MacLoughlin, P.F. (2000) Effects of hydrodynamic and interfacial forces on plant cell suspension systems. Adv. Biochem. Eng. Biotechnol. 67: 139-177.PubMedGoogle Scholar
  43. [43]
    Dunlop, E.; Namdev, P. and Rosenberg, M. (1994) Effect of fluid shear forces on plant cell suspensions. Chemical Eng. Sci. 49: 2263-2276.Google Scholar
  44. [44]
    Sowana, D.; Williams, D.; Dunlop, E.; Dally, B.; O’Neill, B. and Fletcher, D. (2001) Turbulent shear stress effects on plant cell suspension cultures. Trans. Chem.E 79: 867-875.Google Scholar
  45. [45]
    Sowana, D.; Williams, D.; O’Neill, B. and Dunlop, E. (2002) Studies of the shear protective effects of Pluronic F-68 on wild carrot cell cultures. Biochemical Eng. J. 12: 165-173.Google Scholar
  46. [46]
    MacLoughlin, P.F.; Malone, D.M.; Murtagh, J.T. and Kieran, P.M. (1998) The effects of turbulent jet flows on plant cell suspension cultures. Biotechnol. Bioeng. 58: 595-604.PubMedGoogle Scholar
  47. [47]
    Namdev, P.K. and Dunlop, E.H. (1995) Shear sensitivity of plant cells in suspension. Appl. Biochem. Biotechnol. 54: 109-131.Google Scholar
  48. [48]
    Han, R. and Yuan, Y. (2004) Oxidative burst in suspension culture of Taxus cuspidata induced by a laminar shear stress in short-term. Biotechnol. Progress 20: 507-513.Google Scholar
  49. [49]
    Yahraus, T.; Chandra, S.; Legendre, L. and Low, P.S. (1995) Evidence for a mechanically induced oxidative burst. Plant Physiol. 109: 1259-1266.PubMedPubMedCentralGoogle Scholar
  50. [50]
    Shinmyo, A.; Shoji, T.; Bando, E.; Nagaya, S.; Nakai, Y.; Kato, K.; Sekine, M. and Yoshida, K. (1998) Metabolic engineering of cultured tobacco cells. Biotechnol. Bioeng. 58: 329-332.PubMedGoogle Scholar
  51. [51]
    Koroleva, O.A.; Tomlinson, M.; Parinyapong, P.; Sakvarelidze, L.; Leader, D.; Shaw, P. and Doonan, J.H. (2004) CycD1, a Putative G1 Cyclin from Antirrhinum majus, accelerates the cell cycle in cultured tobacco BY-2 Cells by enhancing both G1/S entry and progression through S and G2 phases. Plant Cell 16: 2364-2379.PubMedPubMedCentralGoogle Scholar
  52. [52]
    Cockcroft, C.E.; den Boer, B.G.; Healy, J.M. and Murray, J.A. (2000) Cyclin D control of growth rate in plants. Nature 405: 575-579.PubMedGoogle Scholar
  53. [53]
    Gao, J. and Lee, J. (1992) Effect of oxygen supply on the suspension culture of genetically modified tobacco cells. Biotechnol. Progress 8: 285-290.Google Scholar
  54. [54]
    Cooney, C.; Wang, D. and Mateles, R. (1969) Measurement of heat evolution and correlation with oxygen consumption during microbial growth. Biotechnol. Bioeng. 11: 269-281.PubMedGoogle Scholar
  55. [55]
    Hashimoto, T. and Azechi, S. (1988) Bioreactors for large-scale culture of plant cells. In: Bajaj, Y.P.S. (Ed.), Biotechnology in Agriculture and Forestry. Springer, Berlin; pp. 104-122.Google Scholar
  56. [56]
    Farres, J. and Kallio, P.T. (2002) Improved cell growth in tobacco suspension cultures expressing Vitreoscilla hemoglobin. Biotechnol. Progress 18: 229-233.Google Scholar
  57. [57]
    Igamberdiev, A.U.; Seregelyes, C.; Manac’h, N. and Hill, R.D. (2004) NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley hemoglobin. Planta 219: 95-102.PubMedGoogle Scholar
  58. [58]
    Shiao, T.L.; Ellis, M.H.; Dolferus, R.; Dennis, E.S. and Doran, P.M. (2002) Overexpression of alcohol dehydrogenase or pyruvate decarboxylase improves growth of hairy roots at reduced oxygen concentrations. Biotechnol. Bioeng. 77: 455-461.PubMedGoogle Scholar
  59. [59]
    Suehara, K.; Takao, A.; Nakamura, K.; Uozumi, N. and Kobayashi, T. (1996) Optimal expression of GUS gene from methyl jasmonate-inducible promoter in high density culture of transformed tobacco cell line BY-2. J. Ferment. Bioeng. 82: 51-55.Google Scholar
  60. [60]
    Yoshida, K.; Kasai, T.; Garcia, M.R.; Sawada, S.; Shoji, T.; Shimizu, S.; Yamazaki, K.; Komeda, Y. and Shinmyo, A. (1995) Heat-inducible expression system for a foreign gene in cultured tobacco cells using the HSP18.2 promoter of Arabidopsis thaliana. Appl. Microbiol. Biotechnol. 44: 466-472.PubMedGoogle Scholar
  61. [61]
    Uozumi, N.; Inoue, Y.; Yamazaki, K. and Kobayashi, T. (1994) Light activation of expression associated with the tomato rbcS promoter in transformed tobacco cell line BY-2. J. Biotechnol. 36: 55-62.PubMedGoogle Scholar
  62. [62]
    Nara, Y.; Kurata, H.; Seki, M. and Taira, K. (2000) Glucocorticoid-induced expression of a foreign gene by the GVG system in transformed tobacco BY-2 cells. Biochemical Eng. J. 6: 185-191.Google Scholar
  63. [63]
    Kim, K.Y.; Kwon, S.Y.; Lee, H.S.; Hur, Y.; Bang, J.W. and Kwak, S.S. (2003) A novel oxidative stress-inducible peroxidase promoter from sweet potato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. Plant Mol. Biol. 51: 831-838.PubMedGoogle Scholar
  64. [64]
    Boetti, H.; Chevalier, L.; Denmat, L.A.; Thomas, D. and Thomasset, B. (1999) Efficiency of physical (light) or chemical (ABA, tetracycline, CuSO4 or 2-CBSU)-stimulus-dependent gus gene expression in tobacco cell suspensions. Biotechnol. Bioeng. 64: 1-13.PubMedGoogle Scholar
  65. [65]
    Nagaya, S.; Nakai, Y., Kato, K; Sekine, M.; Yoshida, K. and Shinmyo, A. (2000) Isolation of growth-phase-specific promoters from cultured tobacco cells. J. Biosci. Bioeng. 89: 231-235.PubMedGoogle Scholar
  66. [66]
    Fischer, R.; Stoger, E.; Schillberg, S.; Christou, P. and Twyman, R.M. (2004) Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol. 7: 152-158.PubMedGoogle Scholar
  67. [67]
    Bateman, K.; Congiu, M.; Tregear, G.; Clarke, A. and Anderson, M. (1997) Bacitracin significantly reduces degradation of peptides in plant cell cultures. Biotechnol. Bioeng. 53: 226-231.PubMedGoogle Scholar
  68. [68]
    James, E.; Mills, D. and Lee, J. (2002) Increased production and recovery of secreted foreign proteins from plant cell cultures using an affinity chromatography bioreactor. Biochemical Eng. J. 12: 205-213.Google Scholar
  69. [69]
    Goddijn, O. and Pen, J. (1995) Plants as bioreactors. TIBTECH 13: 379-387.Google Scholar
  70. [70]
    Gallie, D. and Walbot, V. (1992) Identification of the motifs within the tobacco mosaic virus 5’-leader responsible for enhancing translation. Nucleic Acids Res. 20: 4631-4638.PubMedPubMedCentralGoogle Scholar
  71. [71]
    Day, C.; Lee, E.; Kobayashi, J.; Holappa, L.; Albert, H. and Ow, D. (2000) Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev. 14: 2869-2880.PubMedPubMedCentralGoogle Scholar
  72. [72]
    Hilleren, P. and Parker, R. (1999) Mechanisms of mRNA surveillance in eukaryotes. Ann. Rev. Genet. 33: 229-260.PubMedGoogle Scholar
  73. [73]
    Spiker, S. and William, F. (1996) Nuclear matrix attachment regions and transgene expression in plants. Plant Physiol. 110: 15-21.PubMedPubMedCentralGoogle Scholar
  74. [74]
    Voinnet, O.; Pinto, Y. and Baulcombe, D. (1999) Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad. Sci. USA 96: 14147-14152.PubMedGoogle Scholar
  75. [75]
    Verdelhan des Molles, D.; Gomord, V.; Bastin, M.; Faye, L. and Courtois, D. (1999) Expression of a carrot invertase gene in tobacco suspension cells cultivated in batch and continuous culture conditions. J. Biosci. Bioeng. 87: 302-306.PubMedGoogle Scholar
  76. [76]
    Su, W.; He, B.; Liang, H. and Sun, S. (1996) A perfusion air-lift bioreactor for high density plant cell cultivation and secreted protein production. J. Biotechnol. 50: 225-233.Google Scholar
  77. [77]
    Drapeau, D.; Blanch, H.W. and Wilke, C.R. (1987) Economic assessment of plant cell culture for the production of ajmalicine. Biotechnol. Bioeng. 30: 946-953.PubMedGoogle Scholar
  78. [78]
    Terashima, M.; Ejiri, Y.; Hashikawa, N. and Yoshida, H. (2001) Utilization of an alternative carbon source for efficient production of human alpha(1)-antitrypsin by genetically engineered rice cell culture. Biotechnol. Prog. 17: 403-406.PubMedGoogle Scholar
  79. [79]
    Su, W. (2000) Perfusion bioreactors. In: Spier, R. (Ed.), Encyclopedia of Cell Technology. Wiley, New York; pp. 230-242.Google Scholar
  80. [80]
    Hsiao, T.Y.; Bacani, F.T.; Carvalho, E.B. and Curtis, W.R. (1999) Development of a low capital investment reactor system: application for plant cell suspension culture. Biotechnol. Prog. 15: 114-122.PubMedGoogle Scholar
  81. [81]
    Junker, B.; Stanik, M.; Barna, C.; Salmon, P. and Buckland, B. (1998) Influence of impeller type on mass transfer in fermentation vessels. Bioproc.Eng. 19: 403-413.Google Scholar
  82. [82]
    Nienow, A.W. and Bujalski, W. (2002) Recent studies on agitated three-phase (gas-solid-liquid) systems in the turbulent regime. Chemical Eng. Res. Design 80: 832-838.Google Scholar
  83. [83]
    Junker, B.H.; Mann, Z. and Hunt, G. (2000) Retrofit of CD-6 (Smith) impeller in fermentation vessels. Appl. Biochem. Biotechnol. 89: 67-83.PubMedGoogle Scholar
  84. [84]
    Pinelli, D.; Bakker, A.; Myers, K.J.; Reeder, M.F.; Fasano, J. and Magelli, F. (2003) Some features of a novel gas dispersion impeller in a dual-impeller configuration. Chemical Eng. Res. Design 81: 448-454.Google Scholar
  85. [85]
    Anon. (2002) Scholar
  86. [86]
    Csiszar, P. (2004) Scholar
  87. [87]
    Dalton, C. (1985) Application of gas analysis to continuous culture. In: Neumann, K.; Barz, W. and Reinhard, E. (Eds.) Primary and secondary metabolism of plant cell cultures. Springer, Berlin; pp. 58-65.Google Scholar
  88. [88]
    Bond, P.; Fowler, M. and Scragg, A. (1988) Growth of Catharanthus roseus cell suspensions in bioreactors: on-line analysis of oxygen and carbon dioxide levels in inlet and outlet gas streams. Biotechnol. Lett 10: 713-718.Google Scholar
  89. [89]
    Nikolova, P.; Moo-Young, M. and Legge, R. (1991) Application of process mass spectroscopy to the detection of metabolic changes in plant tissue culture. Plant Cell Tissue Org. Cult. 25: 219-224.Google Scholar
  90. [90]
    Zhong, J.; Konstantinov, K. and Yoshida, T. (1994) Computer-aided on-line monitoring of physiological variables in suspended cell cultures of Perilla frutescensin a bioreactor. J. Ferment. Bioeng. 77: 445-447.Google Scholar
  91. [91]
    Zhong, J. (2001) Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. Adv. Biochemical Eng. Biotechnol. 72: 1-26.Google Scholar
  92. [92]
    Komaraiah, P.; Navratil, M.; Carlsson, M.; Jeffers, P.; Brodelius, M.; Brodelius, P.E.; Kieran, P.M. and Mandenius, C.F. (2004) Growth behaviour in plant cell cultures based on emissions detected by a multisensor array. Biotechnol. Prog. 20: 1245-1250.PubMedGoogle Scholar
  93. [93]
    Asali, E.C.; Mutlmmma, R. and Humphrey, A.E. (1992) Use of NAD(P)H-fluorescence for monitoring the response of starved cells of Catharanthus roseus in suspension to metabolic perturbations. J. Biotechnol. 23: 83-94.Google Scholar
  94. [94]
    Choi, J.; Park, Y.; shin, C.; Kim, D. and Lee, W. (1995) Analysis of culture fluorescence by a fiber-optic sensor in Nicotiana tabacum plant cell culture. Korean J. Chemical Eng. 12: 528-534.Google Scholar
  95. [95]
    Su, W.W.; Guan, P. and Bugos, R.C. (2004) High-level secretion of functional green fluorescent protein from transgenic tobacco cell cultures: characterization and sensing. Biotechnol. Bioeng. 85: 610-619.PubMedGoogle Scholar
  96. [96]
    Miyawaki, A.; Liopis, J.; Heim, R.; McCaffery, J.M.; Adams, J.A.; Ikura, M. and Tsien, R.Y. (1997) Fluorescent indicators for Ca2 + based on green fluorescent proteins and calmodulin. Nature 388: 882-887.PubMedGoogle Scholar
  97. [97]
    Fehr, M.; Frommer, W.B. and Lalonde, S. (2002) Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proc. Natl. Acad. Sci. USA 99: 9846-9851.PubMedGoogle Scholar
  98. [98]
    Su, W.; Liu, B.; Lu, W.; Xu, N.; Du, G. and Tan, J. (2004) Observer-based online compensation of inner filter effect in monitoring fluorescence of GFP-expressing plant cell cultures. (under publication).Google Scholar
  99. [99]
    Albiol, J.; Robuste, J.; Casas, C. and Poch, M. (1993) Biomass estimation in plant cell cultures using extended Kalman filter. Biotechnol. Progress 9: 174-178.Google Scholar
  100. [100]
    Albiol, J.; Campmajo, C.; Casas, C. and Poch, M. (1995) Biomass estimation in plant cell cultures: a neural network approach. Biotechnol. Progress 11: 88-92.Google Scholar
  101. [101]
    Zhang, J. and Su, W. (2002) Estimation of intracellular phosphate content in plant cell cultures using an extended Kalman filter. J. Biosci. Bioeng. 94: 8-14.PubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

    • 1
  1. 1.Department of Molecular Biosciences and BioengineeringUniversity of HawaiiHonoluluUSA

Personalised recommendations