Types And Designs Of Bioreactors For Hairy Root Culture

  • Yong-Eui Choi
  • Yoon-Soo Kim
  • Kee-Yoeup Paek
Part of the Focus on Biotechnology book series (FOBI, volume 6)


Hairy Root Root Culture Hairy Root Culture Panax Ginseng Bubble Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Fujita, Y. (1988) Industrial production of shikonin and berberine. In: Applications of Plant Cell and Tissue Culture, Ciba Foundation Symposium 137, Wiley, Chichester; pp. 228–238.Google Scholar
  2. [2]
    Shimomura, K.; Sudo, H.; Saga, H. and Kamada, H. (1991) Shikonin production and secretion by hairy root cultures of Lithospermum erythrorhizon. Plant Cell Rep. 10: 282–285.PubMedGoogle Scholar
  3. [3]
    Srinivansan, V.; Pestchankar, L.; Moser, S.; Hirasuna, T.J.; Taticek, R.A. and Shuler, M.L. (1995) Taxolproduction in bioreactors: kinetics of biomass accumulation, nutrient uptake, and taxol production by cell suspensions of Taxus baccata. Biotechnol. Bioengg. 47: 666-676.Google Scholar
  4. [4]
    Kobayashi, Y.; Fukui, H. and Tabata, M. (1988) Berberine production by batch and semi-continuous cultures of immobilized Thalictrum cells in an improved bioreactor. Plant Cell Rep. 7: 249-253.PubMedGoogle Scholar
  5. [5]
    DiCosmo, F. and Misawa, M. (1995) Plant cell tissue culture: alternatives for metabolite production. Biotechnol. Adv. 13: 425-453.PubMedGoogle Scholar
  6. [6]
    Flores, H.E.; Hoy, M.W. and Puckard, J.J. (1987) Secondary metabolites from root cultures. Trends Biotechnol. 5: 64-69.Google Scholar
  7. [7]
    Ramachandra Rao, S. and Ravishankar, G.A. (2002) Plant cell cultures: Chemical factories of secondary metabolites. Biotechnol. Adv. 20: 101-153.Google Scholar
  8. [8]
    Chilton, M.D.; Tepfer, D.; Petit, A.; David, C.; Casse-Delbart, F. and Tempé, J. (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of host plant root cells. Nature 295: 432–434.Google Scholar
  9. [9]
    Lipp Joao, K.H.L. and Brown, T.A. (1994) Long-term stability of root cultures of tomato transformed with Agrobacterium rhizogenesR1601. J. Exp. Bot. 45: 641-647.Google Scholar
  10. [10]
    Baiza, A.M.; Quiroz-Moreno, A.; Ruiz, J.A. and Loyola-Vargas, V.M. (1999) Genetic stability of hairy root cultures of Datura stramonium. Plant Cell Tissue Org. Cult. 59: 9-17.Google Scholar
  11. [11]
    Flores, H.E. and Filner, P. (1985) Metabolic relationships of putrescine, GABA and alkaloids in cell and root cultures of Solanaceae. In: Neumann, K.H.; Barz, W. and Reinhart, E.J. (Eds.) Primary and Secondary Metabolism of Plant Cell Cultures. Springer-Verlag, New York; pp. 568–578.Google Scholar
  12. [12]
    Kamada, H.; Okamura, N.; Satake, M.; Hirada, H. and Shimomura, K. (1986) Alkaloid production by hairy root cultures in Atropa belladonna. Plant Cell Rep. 5: 239-242.PubMedGoogle Scholar
  13. [13]
    Shanks, J.V. and Morgan, J. (1999) Plant ‘hairy root’ culture. Curr. Opin. Biotechnol. 10: 151-155.PubMedGoogle Scholar
  14. [14]
    Giri, A. and Narasu, M.L. (2000) Transgenic hairy roots: recent trends and applications. Biotechnol. Adv.18: 1-22.PubMedGoogle Scholar
  15. [15]
    Hamill, J.D.; Robins, R.J.; Parr, A.J.; Evans, D.M.; Furze, J.M. and Rhodes, M.J. (1990) Over-expressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation. Plant Mol. Biol. 15: 27-38.PubMedGoogle Scholar
  16. [16]
    Hashimoto, T.; Yun, DZ. and Yamada, Y. (1993) Production of tropane alkaloids in genetically engineered root cultures. Phytochem. 2: 713-718.Google Scholar
  17. [17]
    Zhang, L.; Ding, R.; Chai, Y.; Bonfill, M.; Moyano, E.; Oksman-Caldentey, K.M.; Xu, T.; Pi, Y.; Wang, Z.; Zhang, H.; Kai, G.; Liao, Z.; Sun, X. and Tang, K. (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc. Natl. Acad. Sci. USA 101: 6786-6791.PubMedGoogle Scholar
  18. [18]
    Moyano, E.; Jouhikainen, K.; Tammela, P.; Palazon, J.; Cusido, R.M.; Pinol, M.T.; Teeri, T.H. and Oksman-Caldentey, K.M. (2003) Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. J. Exp. Bot. 54: 203-211.PubMedGoogle Scholar
  19. [19]
    White, F.F. and Sinkar, V.P. (1987) Molecular analysis of root induction by Agrobacterium rhizogenes. In: Hohn, T. and Schell, J. (Eds.) Plant DNA infectious agents. Springer-Verlag, New York; pp. 149-177.Google Scholar
  20. [20]
    Jung, G. and Tepfer, D. (1987) Use of genetic transformation by the Ri T-DNA of Agrobacterium rhizogenes to stimulate biomass and tropane alkaloid production in Atropa belladonna and Calystegia sepium roots grown in vitro. Plant Sci. 50: 145-151.Google Scholar
  21. [21]
    Vernade, D.; Herrera-Estrella, A.; Wang, K. and Van Montagu, M. (1988) Glycine betaine allows noindent enhanced induction of the Agrobacterium tumefaciens vir genes by acetosyringone at low pH. J. Bacteriol. 170: 5822–5829.PubMedPubMedCentralGoogle Scholar
  22. [22]
    Stachel, S.E.; Messens, E.; Van Montagu. M. and Zambryski, P. (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624-629.Google Scholar
  23. [23]
    Manickavasagam, M.; Ganapathi, A.; Anbazhagan, V.R.; Sudhakar, B.; Selvaraj, N., Vasudevan, A. and Kasthurirengan, S. (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep. 23:134 43.PubMedGoogle Scholar
  24. [24]
    Shimoda, N.; Toyoda-Yamamoto, A.; Nagamine, J.; Usami, S.; Katayama, M.; Sakagami, Y. and Machida, Y. (1990) Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monosaccharides. Proc. Natl. Acad. Sci. USA 87: 6684–6688.PubMedGoogle Scholar
  25. [25]
    Cangelosi, G.A.; Ankenbauer, R.G. and Nester, E.W. (1990) Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc. Natl.Acad. Sci. USA. 87: 6708-6712.PubMedGoogle Scholar
  26. [26]
    White, F.F.; Taylor, B.H.; Huffman, G.A.; Gordon, M.P. and Nester, E.W. (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J. Bacteriol. 164: 33-44.PubMedPubMedCentralGoogle Scholar
  27. [27]
    Taylor, B.H.; Amasino, R.M.; White, F.F.; Nester, E.W. and Gordon, M.P. (1985) T-DNA analysis of plants regenerated from hairy root tumor. Mol. Gen. Genet. 201: 554–557.Google Scholar
  28. [28]
    Brillanceau, M.H.; David, C. and Tempe, J. (1989) Genetic transformation of Catharanthus roseus G. Don by Agrobacterium rhizogenes. Plant Cell Rep. 8: 63–66.PubMedGoogle Scholar
  29. [29]
    Batra, J.; Dutta, A.; Singh, D.; Kumar, S. and Sen, J. (2004) Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right-termini-linked Ri TDNA gene integration. Plant Cell Rep. 23: 148-154.PubMedGoogle Scholar
  30. [30]
    Han, B.; Linden, J.C.; Gujarathi, N.P. and Wickramasinghe, S.R. (2004) Population balance approach to modelling hairy root growth. Biotechnol. Prog. 20: 872-879.PubMedGoogle Scholar
  31. [31]
    Bordonaro, J.L. and Curtis, W.R. (2000) Inhibitory role of root hairs on transport within root culture bioreactors. Biotechnol. Bioeng. 70: 176-86.PubMedGoogle Scholar
  32. [32]
    Shiao, T.L. and Doran, P.M. (2000) Root hairiness: effect on fluid flow and oxygen transfer in hairy root cultures. J. Biotechnol. 83: 199-210.PubMedGoogle Scholar
  33. [33]
    Weathers, P.J.; Wyslouzil, B.E.; Wobbe, K.K.; Kim, Y.J. and Yigit, E. (1999) The biological response of hairy roots to O2 levels in bioreactors. In Vitro Cell. Dev. Biol.-Plant 35: 286-289.Google Scholar
  34. [34]
    Doran, P.M. (1997) Hairy roots: Culture and Application. Harwood Academic Publishers.Google Scholar
  35. [35]
    Hilton, M.G. and Rhodes, M.J. (1990) Growth and hyoscyamine production of ’hairy root’ cultures of Datura stramonium in a modified stirred tank reactor. Appl. Microbiol. Biotechnol. 33: 132-138.PubMedGoogle Scholar
  36. [36]
    Kim, Y.H. and Yoo, Y.J. (1993) Development of a bioreactor for high density culture of hairy roots. Biotechnol. Lett. 7: 859-862.Google Scholar
  37. [37]
    Nuutila, A. M.; Lindqvist, A. S. and Kauppinen, V. (1994) Growth of hairy root cultures of strawberry (Fragaria x ananassa Duch.) in three different types of bioreactors. Biotechnol. Techn. 11: 363-366.Google Scholar
  38. [38]
    Kondo, O.; Honda, H.; Taya, M. and Kobayashi, T. (1989) Comparison of growth properties of carrot hairy root in various bioreactors. Appl. Microbiol. Biotechnol. 32: 291-294.Google Scholar
  39. [39]
    Uozumi, N.; Kohketsu, K. and Kobayashi, T. (1993) Growth and kinetic parameters of Ajuga hairy roots in fed-batch culture on monosaccharide medium. J. Chem. Tech. Biotechnol. 57: 155-161.Google Scholar
  40. [40]
    Doran, P.M. (1999) Design of mixing systems for plant cell suspensions in stirred reactors. Biotechnol. Prog. 15: 319-335.PubMedGoogle Scholar
  41. [41]
    Davioud, E.; Kan, C.; Hamon, J.; Tempé, J. and Husson, H-P. (1989) Production of indole alkaloids by in vitro root cultures from Catharanthus trichophyllus. Phytochem. 28: 2675-2680.Google Scholar
  42. [42]
    Keil, M.; Hartle, B.; Guillaume, A. and Psiorz, M. (2000) Production of amarogentin in root cultures of Swertia chirata. Planta Med. 66: 452-457.PubMedGoogle Scholar
  43. [43]
    Jeong, G.T.; Park, D.H.; Hwang, B. and Woo, J.C. (2003) Comparison of growth characteristics of Panax ginseng hairy roots in various bioreactors. Appl. Biochem. Biotechnol. 107: 493-503.Google Scholar
  44. [44]
    Kintzios, S.; Makri, O.; Pistola, E.; Matakiadis, T.; Ping, Shi H. and Economou, A. (2004) Scale-up production of puerarin from hairy roots of Pueraria phaseoloides in an airlift bioreactor. Biotechnol. Lett. 26: 1057-1059.PubMedGoogle Scholar
  45. [45]
    Du, M.; Wu, X.J.; Ding, J.; Hu, Z.B.; White, K.N. and Branford-White, C.J. (2003) Astragaloside IV and polysaccharide production by hairy roots of Astragalus membranaceus in bioreactors. Biotechnol. Lett. 25: 1853-1856.PubMedGoogle Scholar
  46. [46]
    Jeong, G.T.; Park, D.H.; Hwang, B.; Park, K.; Kim, S.W. and Woo, J.C. (2002) Studies on mass production of transformed Panax ginseng hairy roots in bioreactor. Appl. Biochem. Biotechnol. 98: 1115-1127.PubMedGoogle Scholar
  47. [47]
    Kwok, K.H. and Doran, P.M. (1995) Kinetic and stoichiometric analysis of hairy roots in a segmented bubble column reactor. Biotechnol. Prog. 11: 429-435.Google Scholar
  48. [48]
    Tescione, L.D.; Ramakrishnan, D. and Curtis, W.R. (1997) The role of liquid mixing and gas-phase dispersion in a submerged, sparged root reactor. Enzyme Microb. Technol. 20: 207-13.PubMedGoogle Scholar
  49. [49]
    Cusido, R.M.; Palazon, J.; Pinol, M.T.; Bonfill, M. and Morales, C. (1999) Datura metel: in vitroproduction of tropane alkaloids. Planta Med. 65: 144-148.PubMedGoogle Scholar
  50. [50]
    McKelvey, S.A.; Gehrig, J.A.; Hollar, K.A. and Curtis, W.R. (1993) Growth of plant root cultures in liquid- and gas-dispersed reactor environments. Biotechnol. Prog. 9: 317-322.PubMedGoogle Scholar
  51. [51]
    Muranaka, T.; Kazuoka, T.; Ohkawa, H. and Yamada, Y. (1993) Characteristics of scopolamine-releasing hairy roots clones of Duboisia leichhardtii. Biosci. Biotech. Biochem. 57: 1398-13Google Scholar
  52. [52]
    Kim, Y.J.; Weathers, P.J. and Wyslouzil, B.E. (2002) Growth of Artemisia annua hairy roots in liquid-and gas-phase reactors. Biotechnol. Bioeng. 80: 454-464.PubMedGoogle Scholar
  53. [53]
    Souret, F.F.; Kim, Y.; Wyslouzil, B.E.; Wobbe, K.K. and Weathers, P.J. (2003) Scale-up of Artemisia annua L. hairy root cultures produces complex patterns of terpenoid gene expression. Biotechnol. Bioeng. 83: 653-667.PubMedGoogle Scholar
  54. [54]
    Kino-Oka, M.; Hitaka, Y.; Taya, M. and Tone, S. (1999) High-density culture of red beet hairy roots by considering medium flow condition in a bioreactor. Chem. Eng. Sci. 54: 3179-3186.Google Scholar
  55. [55]
    Williams, G.R. and Doran, P.M. (2000) Hairy root culture in a liquid-dispersed bioreactor: characterization of spatial heterogeneity. Biotechnol. Prog. 16: 391-401.PubMedGoogle Scholar
  56. [56]
    Dilorio, A. A.; Cheetam, R. D. and Weathers, P. J. (1992) Growth of transformed roots in a nutrient mist bioreactor: Reactor performance and evaluation. Appl. Microbiol. Biotechnol. 37: 457-462.Google Scholar
  57. [57]
    Whitney, P. J. (1992) Novel bioreactors for the growth of roots transformed by Agrobacterium rhizogenes. Enzyme Mirobiol. Technol. 14: 13-17.Google Scholar
  58. [58]
    Buer, C.S.; Correll, M.J.; Smith, T.C.; Towler, M.J.; Weathers, P.J.; Nadler, M.; Seaman, J. and Walcerz, D. (1996) Development of a nontoxic acoustic window nutrient-mist bioreactor and relevant growth data. In Vitro Cell. Dev. Biol.-Plant 32: 299-304.Google Scholar
  59. [59]
    Wilson, P.D.G. (1997) The philot-scale cultivation of transformed roots. In: Doran, P.M. (Ed.) Hairy roots: culture and application. Harwood Academic, Amsterdam; pp. 179-190.Google Scholar
  60. [60]
    Taya, M.; Yoyama, A.; Kondo, O. and Kobayashi, T. (1989) Growth characteristics of plant hairy roots and their cultures in bioreactors. J. Chem. Eng. Japan 22: 84-89.Google Scholar
  61. [61]
    Holmes, P.; Li, S-L.; Green, K.D.; Ford-Lloyd, B.V. and Thomas, N.H. (1997) Drip-tube technology for continuous culture of hairy roots with integrated alkaloid extraction. In: Doran, P.M. (Ed.) Hairy Roots: Culture and Application; Harwood Academic, Amsterdam; pp. 201-208.Google Scholar
  62. [62]
    Bais, H.P.; Suresh, B.; Raghavarao, K.S.M.S. and Ravishankar, G.A. (2002) Performance of hairy root cultures of Cichorium intybusL. in bioreactors of different configurations. In Vitro Cell. Dev. Biol.-Plant 38: 573-580.Google Scholar
  63. [63]
    Kim, Y.; Wyslouzil, B.E. and Weathers, P.J. (2001) A comparative study of mist and bubble column reactors in the in vitro production of artemisinin. Plant Cell Rep. 20: 451-455.Google Scholar
  64. [64]
    Furuya, T.; Yoshikawa, T.; Orihara, Y. and Oda, H. (1994) Studies of the culture conditions for Panax ginseng cells in jar fermentors. J. Natural Products 47: 70-75.Google Scholar
  65. [65]
    Wu, J.Y. and Zhong, J.J. (1999) Production of ginseng and its bioactive components in plant cell culture: current technological and applied aspects. J. Biotechnol. 68: 89-99.PubMedGoogle Scholar
  66. [66]
    Asaka, I.; Li, I.; Hirotani, M.; Asada, Y. and Furuya, T. (1993) Production of ginsenoside saponins by culturing ginseng (Panax ginseng) embryogenic tissues in bioreactors. Biotech. Lett. 15: 1259-1264.Google Scholar
  67. [67]
    Choi, Y.E.; Jeong, J.H. and Shin, C.K. (2003) Hormone-independent embryogenic callus production from ginseng cotyledons using high concentrations of NH4NO3 and progress towards bioreactor production. Plant Cell Tissue Org. Cult. 72: 229-235.Google Scholar
  68. [68]
    Hibino, K. and Ushiyama, K. (1998) Commercial production of ginseng by plant cell culture technology, In: Fu, T.J.; Singh, W.R. and Curtis, W. (Eds.) Plant Cell Culture for the Production of Food Ingredients, Proc ACS Symp, San Francisco, CA, USA, Plenum Press, New York; pp. 13-17.Google Scholar
  69. [69]
    Yoshikawa, T. and Furuya, T. (1987) Saponin production by cultures of Panax ginseng transformed with Agrobacterium rhizogenes. Plant Cell Rep. 6: 449-453.PubMedGoogle Scholar
  70. [70]
    Kevers, C.; Jacques, Ph.; Thonart, Ph. and Gaspar, Th. (1999) In vitro root culture of Panax ginseng and P. quinquefolium. Plant Growth Regul. 27: 173-178.Google Scholar
  71. [71]
    Son, S.H.; Choi, S.M.; Soo, J.H.; Yun, S.R.; Choi, M.S.; Shin, E.M. and Hong, Y.P. (1999) Induction and cultures of mountain ginseng adventitious roots and AFLP analysis for identifying mountain ginseng. Biotechnol. Bioproc. Engi. 4: 119-23.Google Scholar
  72. [72]
    Son, S.H.; Choi, S.M.; Lee, Y.H.; Choi, K.B.; Yun, S.R.; Kim, J.K.; Park, H.J.; Kwon, O.W.; Noh, E.W.; Seon, J.H. and Park, Y.G. (2000) Large-scale growth and taxane production in cell cultures of Taxus cuspidata (Japanese yew) using a novel bioreactor. Plant Cell Rep. 19: 628-633.PubMedGoogle Scholar
  73. [73]
    Shin, K.S.; Murthy, H.N.; Ko, J.Y. and Paek, K.Y. (2002) Growth and betacyanin production by hairy roots of Beta vulgaris in airlift bioreactor. Biotechnol. Lett. 24: 2067-2069.Google Scholar
  74. [74]
    Yu, K.W.; Gao, W.Y.; Son, S.H. and Paek, K.Y. (2000) Improvement of ginsenoside production by jasmonic acid and some other elicitors in hairy root culture of Ginseng (Panax ginseng C.A. Mayer). In Vitro Cell. Dev. Biol. -Plant 36: 424-428.Google Scholar
  75. [75]
    Yu, K.Y.; Gao, W.; Hahn, E.J. and Paek, K.Y. (2002) Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem. Eng. J. 11: 211-215.Google Scholar
  76. [76]
    Choi, S. M.; Son, S. H.; Yun, S. R.; Kwon, O. W.; Seon, J. H.; and Paek, K. Y. (2000) Pilot-scale culture of adventitious roots of ginseng in a bioreactor system. Plant Cell Tissue Org. Cult. 62: 187-193.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Yong-Eui Choi
    • 1
  • Yoon-Soo Kim
    • 2
  • Kee-Yoeup Paek
    • 3
  1. 1.Department of Forestry College of Forest SciencesKangwon National UniversityKangwon-doKorea
  2. 2.Korea Ginseng InstituteChung-Ang UniversityAnsung-shiKorea
  3. 3.Research Centre for the Development of Advanced Horticultural TechnologyChungbuk National UniversityKorea

Personalised recommendations