UWB Distributed Low Noise Amplifiers (DLNA)

  • Aminghasem Safarian
  • Payam Heydari
Part of the Analog Circuits and Signal Processing book series (ACSP)


Power Spectral Density Noise Source Noise Contribution Forward Gain Gate Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Roy et al., “Ultrawideband radio design: The promise of high-speed, short-range wireless connectivity, Proceedings of IEEE, pp. 295–311, Feb. 2004.Google Scholar
  2. 2.
    B. Razavi et al., “A UWB CMOS transceiver,” IEEE Journal of Solid-State Circuits, Vol. 40, no. 12, pp. 2555–2562, Dec. 2005.CrossRefGoogle Scholar
  3. 3.
    X. Li, S. Shekhar, D. J. Allstot, “Gm-Boosted Common-Gate LNA and Differential Colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE Journal of Solid-State Circuits, Vol. 40, no. 12, pp. 2609–2619, Dec. 2005.CrossRefGoogle Scholar
  4. 4.
    A. Shameli, P. Heydari, “A Novel Ultra-Low Power (ULP) Low Noise Amplifier using differential inductor feedback” IEEE European Solid-State Circuits Conf., Sept. 2006.Google Scholar
  5. 5.
    A. Shekhar, X. Li, D. J. Allstot, “A CMOS 3.1-10.6GHz UWB LNA employing staggered compensated series peaking,” IEEE RFIC Symposium, pp. 63–66 June 2006.Google Scholar
  6. 6.
    A. Bevilacqua, A. M. Niknejad, “An Ultra-Wideband LNA for 3.1 to 10.6GHz Wireless Receivers,” IEEE Int. Solid-State Circuits Conference, pp. 382–383 Feb. 2004.Google Scholar
  7. 7.
    A. Ismail, A. Abidi, “A 3 to 10GHz LNA Using Wideband LC-ladder Matching Network,” IEEE Int. Solid-State Circuits Conference, pp. 384–385, Feb. 2004.Google Scholar
  8. 8.
    J. B. Beyer et al., “MESFET Distributed Amplifier Design Guidelines,”IEEE Trans. Microwave Theory and Techniques, pp. 268–275, March 1984.Google Scholar
  9. 9.
    B. Kleveland et al., “Exploiting CMOS reverse interconnect scaling in multigigahertz amplifier and oscillator design,” IEEE Journal of Solid-State Circuits, Vol. 36 no. 10, pp 1480–1488, Oct. 2001.CrossRefGoogle Scholar
  10. 10.
    B. M. Ballweber, R. Gupta, D. J. Allstot, “A Fully Integrated 0.5-5.5-GHz CMOS Distributed Amplifier,” IEEE Journal of Solid-State Circuits, Vol. 35, no. 2, pp. 231–239, Feb. 2000.CrossRefGoogle Scholar
  11. 11.
    H.-T. Ahn, D. J. Allstot, “A 0.5-8.5-GHz fully differential CMOS distributed amplifier,” IEEE Journal of Solid-State Circuits, Vol. 37, pp. 985–993, Aug. 2002.CrossRefGoogle Scholar
  12. 12.
    H. Shigematsu et al., “40Gb/s CMOS Distributed Amplifier for Fiber-Optic Communication Systems,” IEEE Int. Solid-State Circuits Conference, pp. 476–477 Feb. 2004.Google Scholar
  13. 13.
    E. L. Ginzton, W. R. Hewlett, J. H. Jasberg, J. D. Noe, “Distributed Amplification,” Proc. IRE, pp. 956–969, Aug. 1948.Google Scholar
  14. 14.
    A. Q. Safarian, A. Yazdi, P. Heydari, “Design and Analysis of an Ultra Wide-band Distributed CMOS Mixer,” IEEE Trans. on VLSI Systems, Vol. 13, no. 5, pp. 618–629, May 2005.CrossRefGoogle Scholar
  15. 15.
    H. Wu, A. Hajimiri, “Silicon-Based Distributed Voltage-Controlled Oscillator,”IEEE J. Solid-State Circuits, Vol. 36, pp. 493–502, March 2001.CrossRefGoogle Scholar
  16. 16.
    T. H. Lee, The design of CMOS radio-frequency integrated circuits, Cambridge University Press, 2nd ed., 2004.Google Scholar
  17. 17.
    P. Heydari, D. Lin, “A Performance Optimized CMOS Distributed LNA for UWB Receivers,” IEEE Custom Integr. Circ. Conf., Sept. 2005, pp. 337–340.Google Scholar
  18. 18.
    Q. He, M. Feng, “Low-power, High-Gain, and High-Linearity SiGe BiCMOS Wide-Band Low-Noise Amplifier,” IEEE JSSC, Vol. 39, no. 6, pp. 956–959, June 2004.Google Scholar
  19. 19.
    C. S. Aitchison, “The Intrinsic Noise Figure of the MESFET Distributed Amplifier,” IEEE Trans. Microw. Theory Tech., Vol.e MTT-33, no. 6, pp. 460–466, June 1985.CrossRefGoogle Scholar
  20. 20.
    A. Papoulis, S. Pillai, Probability, random variables and stochastic processes, Fourth Edition, McGraw-Hill, 2002.Google Scholar
  21. 21.
    J.-S. Goo, H.-T. Ahn, D. J. Ladwig, Z. Yu, T. H. Lee, R. W. Dutton, “A Noise Optimization Technique for Integrated Low-Noise Amplifiers,?”IEEE Journal of Solid-State Circuits, Vol. 37, no. 8, pp. 994–1002, Aug. 2002.CrossRefGoogle Scholar
  22. 22.
    Y. Tsividis, Operation and modeling of the MOS transistor, pp. 440–512, McGraw-Hill, 1999.Google Scholar
  23. 23.
    R. C. Becker, J. B. Beyer, “On Gain-Bandwidth Product for Distributed Amplifiers,”IEEE Trans. Microwave Theory and Techniques, Vol. MTT-34, no. 6, pp. 736–738, June 1986.CrossRefGoogle Scholar
  24. 24.
    F. Zhang, P. R. Kinget, “Low-Power Programmable Gain CMOS Distributed LNA,” IEEE J. Solid-State Circuits, Vol. 41, no. 6, pp. 1333–1343, June 2006.CrossRefGoogle Scholar
  25. 25.
    R. Liu et al., “A 0.5-14GHz 10.6dB CMOS Cascode Distributed Amplifier,” IEEE Symposium on VLSI Circuits, pp. 139–140, June 2003.Google Scholar
  26. 26.
    S. Lida et al., “A 3.1 to 5.1 GHz CMOS DSSS UWB Transceiver for WPANs,” IEEE Int. Solid-State Circuits Conf., pp. 214–215, Feb. 2005.Google Scholar
  27. 27.
    Y. Park, C.-H. Lee, J.D. Cressler, J. Laskar, A. Joseph, “A very low power SiGe LNA for UWB application,” IEEE MTT-S, pp. 1041-1044 June 2005.Google Scholar
  28. 28.
    X. Guan, C. Nguyen, “Low-power-consumption and high-gain CMOS distributed amplifiers using cascade of inductively coupled common-source gain cells for UWB systems,” IEEE Trans. Microwave Theory and Techniques, Vol. 54, no. 8, pp. 3278–3283, Aug. 2006.CrossRefGoogle Scholar
  29. 29.
    C.-T. Fu, C.-N. Kuo, “3-11-GHz UWB LNA using dual feedback for broadband matching,” IEEE RFIC Symposium, pp. 67–70, June 2006.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Aminghasem Safarian
    • 1
  • Payam Heydari
    • 2
  1. 1.Broadcom CorporationIrvineUSA
  2. 2.University of CaliforniaIrvineUSA

Personalised recommendations